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1. PRELIMINARIES 1

1. Preliminaries

This course is both for students who do not intend at this stage doing any
further theoretical mathematical courses, and also as a prerequisite for the course
Analysis 2 (Lebesgue Integration and Measure Theory; and Hilbert Spaces). In-
teresting and significant applications to other areas of mathematics and to fields
outside mathematics will be given, and the underlying theoretical ideas will be
developed.

The main material for the course will be the text by Reed and these supple-
mentary, more theoretical, notes. I will also occasionally refer to the text by Adams
(fourth edition), last years MATH1115 Foundations Notes and the (supplementary)
MATH1116 Calculus Notes.

There are two different printings of Reed, the second corrects some minor mis-
takes from the first. Most of you will have the second printing. You can tell which
version you have by looking at the first expression on line 1 of page 53; the first
printing has 2−n(M − b) and the second printing has 2−n+1(M − b). I will use the
second version as the standard, but will make comments where it varies from the
first.

Thanks to the many students in 2000 who pointed out various mistakes, par-
ticularly Tristan Bice, Kesava Jay, Ashley Norris and Griff Ware.

1.1. Real number system. Study Reed Chapter 1.1, it should be all review
material. I will also refer ahead to parts of Chapter 2 of Reed, particularly in the
? sections.

We begin with a review of the axioms for the real numbers. However,
we will not usually make deductions directly from the axioms.

Warning: What I call the Cauchy completeness axiom is called the “Com-
pleteness axiom” by Reed. What I call the Completeness axiom is not given a
name by Reed. The terminology I use is more standard, and agrees with Adams
and last years 1115 Notes.

Axioms for the real numbers. Recall that the real number system is a set1 R,
together with two binary operations2 “+” and “×”, a binary relation3 “≤”, and
two particular members of R denoted 0 and 1 respectively. Moreover, it is required
that certain axioms hold.

The first two sets of axioms are the algebraic and the order axioms respectively,
see Reed (P1–P9) and (O1–O9)4. These axioms also hold for the rationals (but not
for the irrationals, or the complex numbers).

In order to discuss the remaining two axioms, we need the set of natural numbers
defined by

N = {1, 1 + 1, 1 + 1 + 1, . . . } = {1, 2, 3, . . . }.
Unless otherwise clear from the context, the letters m, n, i, j, k will always denote
natural numbers, or sometimes more generally will denote integers.

1We discuss sets in the next section
2A binary operation on R is a function which assigns to any two numbers in R a third number

in R. For example, the binary operation “+” assigns to the two real numbers a and b the real
number denoted by a+ b, and so in particular to the two numbers 2 and 3.4 the number 5.4.

3To say “≤” is a binary relation means that for any two real numbers a and b, the expression
a ≤ b is a statement and so is either true or false.

4See also the MATH1115 Foundations Notes, but there we had axioms for < instead of ≤.
This does not matter, since we can derive the properties of either from the axioms for the other.
In fact, last year we did this for the properties of ≤ from axioms for <.
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The two remaining axioms are:
• The Archimedean axiom5: if b > 0 then there is a natural number n

such that n > b.
• The Cauchy completeness axiom: for each Cauchy sequence6 (an) of

real numbers there is a real number a to which the sequence converges.
This is the full set of axioms. All the standard properties of real numbers follow

from these axioms.7

The (usual) Completeness axiom8 is:
if a set of real numbers is bounded above, then it has a least upper bound.

This is equivalent to the Archimedean axiom plus the Cauchy completeness
axiom. More precisely, if we assume the algebraic and order axioms then one can
prove (see the following Remark) that9:

Archimedean axiom
+

Cauchy completeness axiom
⇐⇒ Completeness axiom

Thus, from now on, we will assume both the Archimedean axiom and the Cauchy
completeness axiom, and as a consequence also the (standard) Completeness “ax-
iom”.

Reed only assumes the algebraic, order and Cauchy completeness axioms, but
not the Archimedean axiom, and then claims to prove first the Completeness axiom
(Theorem 2.5.1) and from this the Archimedean axiom (Theorem 2.5.2). The proof
in Theorem 2.5.2 is correct, but there is a mistake in the proof of Theorem 2.5.1,
as we see in the following Remark. In fact, not only is the proof wrong, but in
fact it is impossible to prove the Completeness axiom from the algebraic, order and
Cauchy completeness axioms, as we will soon discuss10.

Remark 1.1.1.? The mistake in the “proof” of Theorem 2.5.1 is a hidden ap-
plication of the Archimedean axiom. On page 53 line 6 Reed says “choose n so that
2−n(M − b) ≤ ε/2 . . . ”. But this is the same as choosing n so that 2n ≥ 2(M−b)

ε ,
and for this you really need the Archimedean axiom. For example, you could choose
n > 2(M−b)

ε by the Archimedean axiom and then if follows that 2n > 2(M−b)
ε (since

2n > n by algebraic and order properties of the reals).
What Reed really proves is that (assuming the algebraic and order axioms):

Archimedean axiom
+

Cauchy completeness axiom
=⇒ Completeness axiom

5This is equivalent to the Archimedean “property” stated in Reed page 4 line 6-, which says
for any two real numbers a, b > 0 there is a natural number n such that na > b.

Take a = 1 in the version in Reed to get the version here. Conversely, the version in Reed
follows from the version here by first replacing b in the version here by b/a to get that n > b/a for
some natural number n, and then multiplying both sides of this inequality by a to get na > b —
this is all justified since we know the usual algebraic and order properties follow from the algebraic
and order axioms.

6See Reed p.45 for the definition of a Cauchy sequence.
7Note that the rationals do not satisfy the corresponding version of the Cauchy completeness

axiom. For example, take any irrational number such as
√

2. The decimal expansion leads to
a sequence of rational numbers which is Cauchy, but there is no rational number to which the
sequence converges. See MATH1115 Notes top of p.15. The rationals do satisfy the Archimedean
axiom, why?

8See Adams page 4 and Appendix A page 23, also the MATH1115 Notes page 8
9“=⇒” means “implies” and “⇐⇒” means “implies and is implied by”
10Not a very auspicious beginning to the book, but fortunately that is the only really serious

blunder.
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The proof of “⇐=” is about the same level of difficulty. In Theorem 2.5.2, Reed
proves in effect that the Completeness axiom implies the Archimedean axiom. The
proof that the Completeness axiom implies the Cauchy completeness axiom is not
too hard, and I will set it later as a ? exercise.

Remark 1.1.2.?? We next ask: if we were smarter, would there be a way of
avoiding the use of the Archimedean axiom in the proof of Theorem 2.5.1? The
answer is No. The reason is that there are models in which the algebraic, order and
Cauchy completeness axioms are true but the Archimedean axiom is false; these
models are sometimes called hyper-reals, see below. If we had a proof that the
algebraic, order and Cauchy completeness axioms implied the Completeness axiom
(i.e. a correct proof of Theorem 2.5.1), then combining this with the (correct) proof
in Theorem 2.5.2 we would end up with a proof that the algebraic, order and Cauchy
completeness axioms imply the Archimedean axiom. But this would contradict the
properties of the “hyper-reals”.

These hyper-reals are quite difficult to construct rigorously, but here is a rough
idea.

Part of any such model looks like a “fattened up” copy of R, in the sense that
it contains a copy of R together with “infinitesimals” squeezed between each real a
and all reals greater than a. This part is followed and preceded by infinitely many
“copies” of itself, and between any two copies there are infinitely many other copies.
See the following crude diagram.

A property of absolute values. Note the properties of absolute value in Propo-
sition 1.1.2 of Reed. Another useful property worth remembering is∣∣ |x| − |y| ∣∣ ≤ |x− y|

Here is a proof from the triangle inequality, Prop. 1.1.2(c) in Reed..

Proof.

|x| = |x− y + y|
≤ |x− y|+ |y| by the triangle inequality.

Hence

|x| − |y| ≤ |x− y|(1)
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and similarly

|y| − |x| ≤ |y − x| = |x− y|.(2)

Since
∣∣ |x| − |y| ∣∣ = |x| − |y| or |y| − |x|, the result follows from (1) and (2).

1.2. Sets and Functions. Study Reed Chapter 1.2. I provide comments and
extra information below.

Sets and their properties. The notion of a set is basic to mathematics. In fact,
it is possible in principle to reduce all of mathematics to set theory. But in practice,
this is usually not very useful.

Sets are sometimes described by listing the members, and more often by means
of some property. For example,

Q = {m/n | m and n are integers, n 6= 0 }.

If a is a member of the set A, we write a ∈ A. Sometimes we say a is an element
of A.

Note the definitions of A ∩B, A ∪B, A \B, Ac and A ⊆ B 11. For given sets
A and B, the first four are sets, and the fifth is a statement that is either true or
false. Note that Ac is not well defined unless we know the set containing A in which
we are taking the complement (this set will usually be clear from the context and
it is often called the universal set). Often A is a set of real numbers and R is the
universal set.

We say for sets A and B that A = B if they have the same elements. This
means that every member of A is a member of B and every member of B is also a
member of A, that is A ⊆ B and B ⊆ A. We usually prove A = B by proving the
two separate statements A ⊆ B and B ⊆ A. For example, see the proof below of
the first of DeMorgan’s laws.

Theorem 1.2.1 (De Morgan’s laws). For any sets A and B

(A ∩B)c = Ac ∪Bc

(A ∪B)c = Ac ∩Bc

A ∩ (B ∪ C) = (A ∩B) ∪ (B ∩ C)

A ∪ (B ∩ C) = (A ∪B) ∩ (B ∪ C)

Remark 1.2.1. The following diagram should help motivate the above. Which
regions represent the eight sets on either side of one of the above four equalities?

The proofs are also motivated by the diagram. But note that all the proofs
really use are the definitions of ∩, ∪, c and the logical meanings of and, or, not.

11We occasionally write A ⊂ B instead of A ⊆ B. Some texts write A ⊂ B to mean that
A ⊆ B but A 6= B; we will not do this.
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Proof. We will prove the first equality by showing (A ∩ B)c ⊆ Ac ∪ Bc and
Ac ∪Bc ⊆ (A ∩B)c.

First assume a ∈ (A ∩B)c (note that a ∈ X where X is the universal set).
Then it is not the case that a ∈ A ∩B.
In other words: it is not the case that (a ∈ A and a ∈ B).
Hence: (it is not the case that a ∈ A) or (it is not the case that a ∈ B).12

That is: a ∈ Ac or a ∈ Bc (remember that a ∈ X).
Hence: a ∈ Ac ∪Bc.

Since a was an arbitrary element in (A∩B)c, it follows that (A∩B)c ⊆ Ac∪Bc.
The argument above can be written in essentially the reverse order (check! ) to

show that Ac ∪Bc ⊆ (A ∩B)c.
This completes the proof of the first equality
The proofs of the remaining equalities are similar, and will be left as exercises.

Products of sets. Recall that

A×B = { (a, b) | a ∈ A, b ∈ B }
For example, R2 = R× R. Here (a, b) is an ordered pair, not an open interval!

We can represent A×B schematically as follows

Remark 1.2.2.? It is interesting to note that we can define ordered pairs in
terms of sets. Important properties required for an ordered pair (a, b) are that it
depends on the two objects a and b and the order is important, i.e. (a, b) 6= (b, a)

12If P and Q are two statements, then “not (P and Q)” has the same meaning as “(not P)
or (not Q)”.
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unless a = b. This is different from the case for sets, i.e. {a, b} = {b, a} for any a
and b.

More generally, the only property we require of ordered pairs is that

(a, b) = (c, d) iff (a = c and b = d).(3)

There are a number of ways that we can define ordered pairs in terms of sets.
The standard definition is

(a, b) := {{a}, {a, b}}.
To show this is a good definition, we need to prove (3).

Proof. It is immediate from the definition that if a = c and b = d then
(a, b) = (c, d).

Next suppose (a, b) = (c, d), i.e. {{a}, {a, b}} = {{c}, {c, d}}. We consider the
two cases a = b and a 6= b separately.

If a = b then {{a}, {a, b}} contains exactly one member, namely {a}, and so
{{c}, {c, d}} also contains exactly the one member {a}. This means {a} = {c} =
{c, d}. Hence a = c and c = d. In conclusion, a = b = c = d.

If a 6= b then {{a}, {a, b}} contains exactly two (distinct) members, namely {a}
and {a, b}. Since {{a}, {a, b}} = {{c}, {c, d}} it follows {c} ∈ {{a}, {a, b}} and so
{c} = {a} or {c} = {a, b}. The second equality cannot be true since {a, b} contains
two members whereas {c} contains one member, and so {c} = {a}, and so c = a.

Since also {c, d} ∈ {{a}, {a, b}} it now follows that {c, d} = {a, b} (otherwise
{c, d} = {a}, but since also {c} = {a} this would imply {{c}, {c, d}} and hence
{{a}, {a, b}} has only one member, and we have seen this is not so). Since a and b
are distinct and {c, d} = {a, b}, it follows c and d are distinct; since a = c it then
follows b = d. In conclusion, a = c and b = d.

This completes the proof.

Power sets. The power set P(A) of a set A is defined to be the set of all subsets
of A. That is

P(A) = {S | S ⊆ A }.

1.2.1. Functions. We say f is a function from the set A into the set B, and
write

f : A→ B,

if f “assigns” to every a ∈ A exactly one member of B. This member of B is
denoted by f(a).

We say A is the domain of f , i.e. Dom(f) = A, and the set of all members in
B of the form f(a) is the range of f , i.e. Ran(f) = { f(a) | a ∈ A }.

Note that Ran(f) ⊆ B, but Ran(f) need not be all of B. An example is the
squaring function, see the next paragraph.

The convention on page 8 in Reed is different. He only requires that f assigns
a value to some members of A, so that for him the domain of f need not be all
of A. This is not standard, and you should normally keep to the definition here.
In particular, in Reed Example 2 page 9 one should say f is a function from R+

13 (not R) to R, and write f : R+ → R, since f only assigns a value to positive
numbers.

We informally think of f as some sort of “rule”. For example, the “squaring
function” f : R → R is given by the rule f(a) = a2 for each a ∈ R. But functions

13R+ = { a ∈ R | a > 0 }.
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can be much more complicated than this, and in particular there may not really be
any “rule” which explicitly describes the function.

The way to avoid this problem is to define functions in terms of sets. We
can think of the squaring function as being given by the set of all ordered pairs
{ (a, a2) | a ∈ R }. This set is a subset of R × R and has the property that to
every a ∈ R there corresponds exactly one element b ∈ R (b = a2 for the squaring
function). Thus we are really just identifying f with its graph.

More generally, we say f is a function from A into B, and write f : A→ B, if
f is a subset of A × B with the property that for every a ∈ A there is exactly one
b ∈ B such that (a, b) ∈ f . See the preceding diagram.

Note that Reed uses a different notation for the function f thought of as a
“rule” or “assignment” on the one hand, and the function f thought of as a subset
of A×B on the other (he uses a capital F in the latter case). We will use he same
notation in either case.

We normally think of f as an assignment, although the “assignment” may not
be given by any rule which can readily be written down.

Note also that Reed uses the notation a
f−→ b to mean the same as f(a) = b.

Reed’s notation is not very common and we will avoid it. Do not confuse it with
the notation f : A→ B.
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2. Cardinality

Some infinite sets are bigger than others, in a sense that can be made
precise.

Study Reed Chapter 1.3. In the following I make some supplementary remarks.

Note the definitions of finite and infinite sets.
A set is countable if it is infinite and can be put in one-one correspondence

with N, i.e. has the same cardinality as N. (Some books include finite sets among
the countable sets; if there is any likelihood of confusion, you can say countably
infinite.) In other words, a set is countable iff it can be written as an infinite
sequence (with all ai distinct)

a1, a2, a3, . . . , an, . . . .

It is not true that all infinite sets are countable, as we will soon see. If an infinite
set is not countable then we say it is uncountable.

Thus every set is finite, countable or uncountable.

Important results in this section are that an infinite subset of a countable set is
countable (Prop 1.3.2), the product of two countable sets is countable (Prop 1.3.4),
the union of two countable sets is countable (Exercise 3), the set of rational numbers
is countable (Theorem 1.3.5), the set of real numbers is uncountable (Theorem
1.3.6 and the remarks following that theorem), and the set of irrational numbers is
uncountable (second last paragraph in Chapter 1.3).

A different proof of Proposition 1.3.4, which avoids the use of the Fundamental
Theorem of Arithmetic and is more intuitive, is the following.

Proposition 2.0.2. If S and T are countable, then so is S × T .

Proof. Let S = (a1, a2, . . . ) and T = (b1, b2, . . . ) Then S × T can be enumer-
ated as follows:

(a1, b1) (a1, b2) → (a1, b3) (a1, b4) → (a1, b5) . . .
↓ ↑ ↓ ↑ ↓

(a2, b1) → (a2, b2) (a2, b3) (a2, b4) (a2, b5) . . .
↓ ↑ ↓

(a3, b1) ← (a3, b2) ← (a3, b3) (a3, b4) (a3, b5) . . .
↓ ↑ ↓

(a4, b1) → (a4, b2) → (a4, b3) → (a4, b4) (a4, b5) . . .
↓

...
...

...
...

...
. . .

It is not the case that all uncountable sets have the same cardinality. In fact
P(A) always has a larger cardinality than A, in the sense that there is no one-one
map from A onto P(A). (There is certainly a one-one map from A into P(A), define
f(A) = {A}). Thus we can get larger and larger infinite sets via the sequence

N,P(N),P(P(N)),P(P(P(N))), . . . .

(One can prove that P(N) and R have the same cardinality.)
? In fact, this is barely the beginning of what we can do: we could take the

union of all the above sets to get a set of even larger cardinality, and then take this
as a new beginning set instead of using N. And still we would hardly have begun!
However, in practice we rarely go beyond sets of cardinality P(P(P(N))), i.e. of
cardinality P(P(R))
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Theorem 2.0.3. For any set A, there is no map f from A onto P(A). In
particular, A and P(A) have different cardinality.

Proof. * Consider any f : A→ P(A). We have to show that f is not onto.
Define

B = { a ∈ A | a /∈ f(a) }.
Then B ⊆ A and so B ∈ P(A). We claim there is no b ∈ A such that f(b) = B.
(This implies that f is not an onto map!)

Assume (in order to obtain a contradiction) that f(b) = B for some b ∈ A.
One of the two possibilities b ∈ B or b /∈ B must be true.

If b ∈ B, i.e. b ∈ f(b), then b does not satisfy the condition defining B, and so
b /∈ B.

If b /∈ B, i.e. b /∈ f(b), then B does satisfy the condition defining B, and so
b ∈ B.

In either case we have a contradiction, and so the assumption must be wrong.
Hence there is no b ∈ A such that f(b) = B and in particular f is not an onto
map.
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3. Sequences

Review the definitions and examples in Section 2.1 of Reed, and the propositions
and theorems in Section 2.2.

3.1. Basic definitions. Recall that a sequence is an infinite list of real num-
bers (later, complex numbers or functions, etc.). We usually write

a1, a2, a3, . . . , an, . . . ,

(an)n≥1, (an)∞n=1 or just (an). Sometimes we start the enumeration from 0 or
another integer.

The sequence (an) converges to a if for any preassigned positive number (usually
called ε), all members of the sequence beyond a certain member (usually called the
Nth), will be within distance ε of a. In symbols:

for each ε > 0 there is an integer N such that

|an − a| ≤ ε for all n ≥ N.

(Note that the definition implies N may (and usually will) depend on ε. We often
write N(ε) to emphasise this fact.)

Study Examples 1–4 in Section 2.1 of Reed. Note that the Archimedean axiom
is needed in each of these three examples (page 30 line 9, page 31 line 8, page 32
line 1, page 33 line 3).

Note also the definitions of

1. diverges; e.g. if an = n2 or an = (−1)n, then (an) diverges.
2. diverges to +∞; e.g. n2 →∞, but not (−1)nn2 →∞

3.2. Convergence properties. From the definition of convergence we have
the following useful theorems, see Reed Section 2.2 for proofs. While the results
may appear obvious, this is partly because we may only have simple examples of
sequences in mind (For a less simple example, think of a sequence which enumerates
the rational numbers!).

Theorem 3.2.1.

1. If (an) converges, then (an) is bounded.14

2. If an ≤ cn ≤ bn for all n15 and both an → L, bn → L, then cn → L.
3. If an → a and bn → b then

(a) an ± bn → a± b,
(b) can → ca (c is a real number),
(c) anbn → ab,
(d) an/bn → a/b, (assuming b 6= 0)16

3.3. Sequences in RN . We will often be interested in sequences of vectors
(i.e. points) in RN .

14A sequence (an) is bounded if there is a real number M such that |an| ≤M for all n.
15Or for all sufficiently large n, more precisely for all n ≥ N (say).
16Since b 6= 0, it follows that bn 6= 0 for all n ≥ N (say). This implies that the sequence

(an/bn) is defined, at least for n ≥ N .
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Such a sequence is said to converge if each of the N sequences of components
converges. For example, [

1 + (−1)n

n sin n
e−n

]
→

[
1
1

]
.

The analogues of 1., 3(a), 3(b) hold, as is easily checked by looking at the
components. More precisely

Theorem 3.3.1.

1. If (un) converges, then (un) is bounded.17

2. If un → u, vn → v and an → a (sequence of real numbers) then
(a) un ± vn → u± v,
(b) anun → au,

3. Aun → Au (where A is any matrix with N columns).

Proof.

1. (Think of the case N = 2) Since (un) converges, so does each of the N
sequences of real numbers (ujn)n≥1 (where 1 ≤ j ≤ N). But this implies that
each of these N sequences of real numbers lies in a fixed interval [−Mj , Mj ] for
j = 1, . . . , N . Let M be the maximum of the Mj . Since |ujn| ≤M for all j and all
n, it follows that |un| =

√
(u1
n)2 + · · ·+ (uNn )2 ≤

√
NM for all n. This proves the

first result.
2. Since each of the components of un ± vn converges to the corresponding

component of u±v by the previous theorem, result 2(a) follows. Similarly for 2(b).
3. This follows from the fact that Aun is a linear combination of the columns

of A with coefficients given by the components of un, while Au is the corresponding
linear combination with coefficients given by the components of u.

More precisely, write A = [a1, . . . ,aN ], where a1, . . . ,aN are the column vectors
of A. Then

Aun = u1
na1 + · · ·+ uNn aN and Au = u1a1 + · · ·+ uNaN

Since u1
n → u1, . . . , uNn → uN as n → ∞, the result follows from 2(b) and

repeated applications of 2(a).

17A sequence of points (un)n≥1 in RN , where un = (u1
n, . . . , u

N
n ) for each n, is bounded if

there is a real number M such that |un| =
√

(u1
n)2 + · · ·+ (u1

n)2 ≤M for all n. This just means

that all members of the sequence lie inside some single ball of sufficiently large radius M .
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4. Markov Chains

Important examples of infinite sequences occur via Markov chains.

See Reed Section 2.3. There is a proof in Reed of Markov’s Theorem (The-
orem 4.0.2 in these notes) for the case of 2 states. But the proof is algebraically
messy and does not easily generalise to more than 2 states. So you may omit Reed
page 42 and the first paragraph on page 43. Later I will give a proof of Markov’s
Theorem using the Contraction Mapping Theorem.

Suppose that a taxi is in one of three possible zones E1, E2 or E3 (e.g. Civic,
Belconnen or Woden). We are interested in its location at a certain sequence of
designated times, lets say at each hour of the day.

Suppose that if the taxi is in E1 at one hour, then the probability that it is
in E1, E2, E3 exactly one hour later is .5, .3, .2 respectively (see the first column of
the following matrix, note that the sum of the probabilities must be 1). Similarly
suppose that if it is in E2 then the probability that it is in E1, E2, E3 exactly one
hour later is .6, .2, .2 (second column), and if it is in E3 then the probability that
it is in E1, E2, E3 exactly one hour later is .4, .2, .4 (third column).

We can represent the situation by a matrix of probabilities,

.5 .6 .4
.3 .2 .2
.2 .2 .4

 .

The first column corresponds to starting in E1, the second to E2 and the third
to E3. We can also show this in a diagram as follows.

We are interested in the long-term behaviour of the taxi. For example, after a
large number of hours, what is the probability that the taxi is in each of the states
E1, E2, E3, and does this depend on the initial starting position?

More generally, consider the following situation, called a Markov process. One
has a system which can be in one of N states E1, . . . , EN . P = (pij) is an N ×N
matrix where pij is the probability that if the system is in state Ej at some time
then it will be in state Ei at the next time. Thus the jth column corresponds to
what happens at the next time if the system is currently in state Ej . We say P is
a probability transition matrix.



H L P
.3

.4

.2

.3

.4

.7.7
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What happens after the system is in state E2

↓

P =


p11 p12 . . . p1N

p21 p22 . . . p2N

...
...

. . .
...

pN1 pN2 . . . pNN


If a vector consists of numbers from the interval [0, 1] and the sum of the

components is one, we say the vector is a probability vector. We require the columns
of a probability transition matrix to be probability vectors.

There are many important examples:

Cell genetics: Suppose a cell contains k particles, some of type A and some
of type B. The state of the cell is the number of particles of type A, so there
are N = k + 1 states. Suppose daughter cells are formed by subdivision.
Then one can often compute from biological considerations the probability
that a random daughter cell is in each of the N possible states.

Population genetics: Suppose flowers are bred and at each generation 1000
flowers are selected at random. A particular gene may occur either 0 or 1
or 2 times in each flower and so there are between 0 and 2000 occurrences
of the gene in the population. This gives 2001 possible states, and one usu-
ally knows from biological considerations what is the possibility of passing
from any given state for one generation to another given state for the next
generation.

Random walk: Suppose an inebriated person is at one of three locations;
home (H), lamppost (L) or pub (P). Suppose the probability of passing
from one to the other an hour later is given by the following diagram:

The corresponding matrix of transition probabilities, with the three
columns corresponding to being in the state H, L, P respectively, is.7 .4 0

.3 .4 .3
0 .2 .7


Other examples occur in diffusion processes, queueing theory, telecommunica-

tions, statistical mechanics, etc. See An Introduction to Probability Theory and Its
Applications, vol 1, by W. Feller for examples and theory.

We now return to the general theory. Suppose that at some particular time the
probabilities of being in the states E1, . . . , EN is given by the probability vector
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a =


a1

a2

...
aN

 (so the sum of the ai is one). Then the probability at the next time of

being in state Ei is18

a1×(prob. of moving from E1 to Ei) + a2 × (prob. of moving from E2 to Ei)

+ · · ·+ aN × (prob. of moving from EN to Ei)
= pi1a1 + pi2a2 + · · ·+ piNaN

= (Pa)i.

Thus if at some time the probabilities of being in each of the N states is given by
the vector a, then the corresponding probabilities at the next time are given by
Pa, and hence at the next time by P (Pa) = P 2a, and hence at the next time by
P 3a, etc.

In the case of the taxi, starting at Civic and hence starting with a probability

vector a =

1
0
0

, the corresponding probabilities at later times are given by Pa =.5
.3
.2

, P 2a =

.51
.25
.24

, P 3a =

.501
.251
.248

, . . . . This appears to converge to

 .5
.25
.25


In fact it seems plausible that after a sufficiently long period of time, the prob-

ability of being in any particular zone should be almost independent of where the
taxi begins. This is indeed the case (if we pass to the limit), as we will see later.

We return again to the general situation. Suppose a is any probability vector
with N components. We will later prove:

Theorem 4.0.2 (Markov). If all entries in the probability transition matrix P
are greater than 0, and a is a probability vector, then the sequence of vectors

a, Pa, P 2a, . . . ,

converges to a probability vector v, and this vector does not depend on a.
Moreover, the same results are true even if we just assume P k has all entries

non-zero for some integer k > 1.
The vector v is the unique non-zero solution of (P − I)v = 0.19

The theorem applies to the taxi, and to the inebriated person (take k = 2).
The proof that if v is the limit then (P − I)v = 0 can be done now.

Proof. Assume v = limPna. Then

v = lim
n→∞

Pna

= lim
n→∞

Pn+1a (as this is the same sequence, just begun one term later)

= lim
n→∞

PPna

= P lim
n→∞

Pna (from Theorem 3.3.1.3)

= Pv.

Hence (P − I)v = 0.

18From intuitive ideas of probability, if you have not done any even very basic probability
theory.

19The matrix I is the identity matrix of the same size as P .
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For the taxi, the non zero solution of−.5 .6 .4
.3 −.8 .2
.2 .2 −.6

v1

v2

v3

 =

0
0
0


with entries summing to 1 is indeed (see previous discussion)

v1

v2

v3

 =

 .5
.25
.25

 and so

in the long term the taxi spends 5025
For the inebriate, the non zero solution of−.3 .4 0

.3 −.6 .3
0 .2 −.3

v1

v2

v3

 =

0
0
0


is

v1

v2

v3

 =

4/9
1/3
2/9

 and so in the long term (as the evening progresses) the inebriate

spends 44% of the time at home, 33% by the lamppost and 22% in the pub.
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5. Cauchy sequences and the Bolzano-Weierstraß theorem

A sequence converges iff it is Cauchy. This gives a criterion for
convergence which does not require knowledge of the limit. It will
follow that a bounded monotone sequence is convergent.

A sequence need not of course converge, even if it is bounded.
But by the Bolzano-Weierstraß theorem, every bounded sequence
has a convergent subsequence.

Read Sections 2.4–6 of Reed, most of it will be review. The following notes go
through the main points.

5.1. Cauchy sequences. (Study Section 2.4 of Reed.)
We first give the definition.

Definition 5.1.1. A sequence (an) is a Cauchy sequence if for each number
ε > 0 there exists an integer N such that

|am − an| ≤ ε whenever m ≥ N and n ≥ N.

The idea is that, given any number (“tolerance”) ε > 0, all terms (not just
successive ones) of the sequence from the Nth onwards are within (this tolerance) ε
of one another (N will normally depend on the particular “tolerance”). The smaller
we choose ε the larger we will need to choose N .

See Example 1 page 45 of Reed (note that the Archimedean axiom is used on
page 45 line 8-).20

Theorem 5.1.2. A sequence is Cauchy iff it converges.

The proof that convergent implies Cauchy is easy (Proposition 2.4.1 of Reed).
The fact that Cauchy implies convergent is just the Cauchy Completeness Axiom
(or what Reed calls the Completeness axiom, see Reed page 48).

Recall that a sequence (an) is increasing if an ≤ an+1 for all n, and is decreasing
if an ≤ an+1 for all n. A sequence is monotone if it is either increasing or decreasing.

Theorem 5.1.3. Every bounded monotone sequence converges.

For the proof of the theorem see Reed page 48. The proof uses a bisection
argument. Begin with a closed interval which contains all members of the sequence,
and keep subdividing it so that all members of the sequence after some index are
in the chosen subinterval. This implies the sequence is Cauchy and so it converges
by the previous theorem. (Note the use of the Archimedean Axiom on page 49 line
10- of Reed.)

Loosely speaking, the sequence of chosen subintervals “converges to a point”
which is the limit of the original sequence.

5.2. Subsequences and the Bolzano-Weierstraß theorem. Study Sec-
tion 2.6 of Reed (omitting the Definition and Proposition on page 56). Also read
Section 3.5 of the MATH1115 Notes and Adams, Appendix III, Theorem 2.

Suppose (an) is a sequence of real numbers. A subsequence is just a sequence
obtained by skipping terms. For example,

a1, a27, a31, a44, a101, . . .

is a subsequence. We usually write a subsequence of (an) as

an1 , an2 , an3 , an4 , . . . , ank , . . . , or
an(1), an(2), an(3), an(4), . . . , an(k), . . . , or

20line 8- means 8 lines from the bottom of the page.
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(ank)k≥1, or (an(k))k≥1

Thus in the above example we have n1 = 1, n2 = 27, n3 = 31, n4 = 44, n5 = 101, . . . .
Instead of the Definition on page 56 of Reed, you may use Proposition 2.6 as

the definition. That is,

Definition 5.2.1. The number d is a limit point of the sequence (an)n≥1 if
there is a subsequence of (an)n≥1 which converges to d.

The limit of a convergent sequence is also a limit point of the sequence. More-
over, it is the only limit point, because any subsequence of a convergent sequence
must converge to the same limit as the original sequence ( why?). On the other
hand, sequences which do not converge may have many limit points, even infinitely
many (see the following examples).

Now look at Examples 1 and 2 on pages 56, 57 of Reed.

Here is an example of a sequence which has every every number in [0, 1] as a
limit point. Let

r1, r2, r3, . . .(4)

be an enumeration of all the rationals in the interval [0, 1]. We know this exists,
because the rationals are countable, and indeed we can explicitly write down such
a sequence.

Every number a ∈ [0, 1] has a decimal expansion, and this actually provides a
sequence (an) of rationals converging to a (modify the decimal expansion a little
to get distinct rationals if necessary).

This sequence may not be a subsequence of (4), since the an may occur in
a different order. But we can find a subsequence (an′) of (an) (which thus also
converges to a) and which is also a subsequence of (4) as follows:

a1′ = a1

a2′ = first term in (an) which occurs after a1′ in (4)

a3′ = first term in (an) which occurs after a2′ in (4)

a4′ = first term in (an) which occurs after a3′ in (4)
...

Theorem 5.2.2 (Bolzano-Weierstraß Theorem). If a sequence (an) is bounded
then it has a convergent subsequence. If all members of (an) belong to a closed
bounded interval I, then so does the limit of any convergent subsequence of (an).

Note that the theorem implies that any bounded sequence must have at least
one limit point. See Reed pages 57, 58.

The proof of the theorem is via a bisection argument. Suppose I is a closed
bounded interval containing all terms of the sequence. Subdivide I and choose
one of the subintervals so it contains an infinite subsequence, then again subdivide
and takes one of the new subintervals with an infinite subsequence of the first
subsequence, etc. Now define a new subsequence of the original sequence by taking
one term from the first subsequence, a later term from the second subsequence,
a still later term from the third subsequence, etc. One can now show that this
subsequence is Cauchy and so converges.

5.3. Completeness property of the reals. (See Section 2.5 of Reed, but
note the errors discussed below).
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The usual Completeness Axiom for the real numbers is:21

if a non empty set A of real numbers is bounded above, then there is
a real number b which is the least upper bound for A.

The real number b need not belong to A, but it is unique. For example, the
least upper bound for each of the sets (0, 1) and [0, 1] is 1.

A common term for the “least upper bound” is the supremum or sup. Similarly,
the greatest lower bound of a set is often called the infimum or inf.

See the MATH1115 2000 notes, §2.3 for a discussion. See also Adams, third
edition, pages 4, A-23.

The Completeness Axiom in fact follows from the other (i.e. algebraic, order,
Archimedean and Cauchy completeness) axioms. It is also possible to prove the
Archimedean and Cauchy completeness axioms from the algebraic, order and Com-
pleteness axioms.

You should now go back and reread Section 1.1 of these notes.

Remarks on the text : Note that the remark at the end of Section 2.5 of Reed about
the equivalence of Theorems 2.4.2, 2.4.3 and 2.5.1 is only correct if we assume
the algebraic, order and Archimedean axioms. The assertion on page 53 before
Theorem 2.5.2 in the corrected printing, that the Archimedean property follows
from Theorem 2.5.1, is not correct, as Theorem 2.5.1 uses the Archimedean property
in its proof (in line 6 of page 53).

21Note that a similar statement is not true of we replace “real” by “rational”. For example,
let

A = {x ∈ Q | x ≥ 0, x2 < 2 }.
Then although A is a nonempty set of rational numbers which is bounded above, there is no
rational least upper bound for A. The (real number) least upper bound is of course

√
2.
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6. The Quadratic Map

This is the prototype of maps which lead to chaotic behaviour.
For some excellent online software demonstrating a wide range of
chaotic behaviour, go to Brian Davies’ homepage, via the Depart-
ment of Mathematics homepage. When you reach the page on “Ex-
ploring chaos”, click on the “graphical analysis” button.

Read Section 2.7 from Reed. We will only do this section lightly, just to indicate
how quite complicated behaviour can arise from seemingly simple maps.

The quadratic map is defined by the recursive relation

xn+1 = rxn(1− xn),(5)

where x0 ∈ [0, 1] and 0 < r ≤ 4. It is a simple model of certain population models,
where xn is the fraction in year n of some “maximum possible” population.

The function F (x) = rx(1 − x) is positive on the interval [0, 1]. Its maximum
occurs at x = 1/2 and has the value a/4. It follows that

F : [0, 1]→ [0, 1]

for r in the given range.

If r ∈ (0, 1], it can be seen from the above diagram (obtained via Brian Davies’
software) that xn → 0, independently of the initial value x0. This is proved in
Theorem 2.7.1 of Reed.

The proof is easy; it is first a matter of showing that the sequence (xn) is
decreasing, as is indicated by the diagram in Reed, and hence has a limit by The-
orem 5.1.3. If x∗ is the limit, then by passing to the limit in (5) it follows that
x∗ = rx∗(1−x∗), and so x∗ = 0. (The other solution of x = rx(1−x) is x = 1−1/r,
which does not lie in [0, 1] — unless a = 1, which gives 0 again.)

For 1 < r ≤ 3 and 0 < x0 < 1, the sequence converges to x∗ = 1− 1/r. (This
is proved in Reed, Theorem 2.7.2 for 1 < r ≤ 2

√
2. The proof is not difficult, but

we will not go through it.) If x0 = 0, 1 then it is easy to see that the sequence
converges to 0.
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For 3 < r ≤ 4 and 0 < x0 < 1 the situation becomes more complicated. If
3 < r ≤ 3.4 (approx.) then xn will eventually oscillate back and forth between two
values which become closer and closer to two of the solutions of x = F (F (x)) =
F 2(x) (see the numerics on Reed page 65).

As r gets larger the situation becomes more and more complicated, and in
particular one needs to consider solutions of x = F k(x) for large k.
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7. Continuity

Study Reed Sections 3.1, 3.2. See also the MATH1115 Notes, Chapter 4.

7.1. Definition of continuity. We will consider functions f : A→ R, where
A ⊆ R is the domain of f , also denoted by D(f). Usually A will be R, an interval,
or a finite union of intervals. (To fix your ideas consider the case A = [a, b] or
A = (a, b).)

Definition 7.1.1. A function f is continuous at a ∈ D(f) if

xn → a =⇒ f(xn)→ f(a)

whenever (xn) ⊆ D(f).22 The function f is continuous if it is continuous at every
point in its domain.

This definition in terms of sequences is quite natural: “as xn gets closer and
closer to a, f(xn) gets closer and closer to f(a)”. By the following theorem it is
equivalent to the usual “ε–δ” definition which does not involve sequences.

Theorem 7.1.2. A function f is continuous at a point a ∈ D(f) iff for every
ε > 0 there is a δ > 0 such that:

x ∈ D(f) and |x− a| ≤ δ ⇒ |f(x)− f(a)| ≤ ε.

(For the proof see Reed Theorem 3.1.3 page 77.)

Note that if f(x) = sin 1
x then f is continuous on its domain (−∞, 0)∪ (0,∞).

However, there is no continuous extension of f to all of R. On the other hand,
f(x) = x sin 1

x is both continuous on its domain (−∞, 0) ∪ (0,∞) and also has a
continuous extension to all of R. (Draw diagrams!)

Another interesting example is the function g given by

g(x) =

{
x if x ∈ Q
−x if x ∈ R \Q.

Then g is continuous at 0 and nowhere else. (Draw a diagram, and convince yourself
via the definition.)

7.2. Limits and continuity. Note the definition of

lim
x→a

f(x) = L,

on the second half of page 78 of Reed, both in terms of sequences and in terms of
ε and δ.23

It follows (provided a is not an isolated point24 of D(f)) that f is continuous
at a ∈ D(f) iff

lim
x→a

f(x) = f(a).

(From our definitions, if a is an isolated point of D(f) then f is continuous at
a although limx→a f(x) is not actually defined. This is not an interesting sitation,
and we would not normally consider continuity at isolated points.)

22By (xn) ⊆ D(f) we mean that each term of the sequence is a member of D(f).
23In the definition of limx→a f(x) = L, we restrict to sequences xn → a with xn 6= a, or we

require that 0 < |x− a| ≤ c (thus x 6= a), depending on the definition used — see Reed page 78.
In the case of continuity however, because the required limit is f(a) (c.f. (21) and (22)), one

can see it is not necessary to make this restriction.
24We say a ∈ A is an isolated point of A if there is no sequence xn → a such that (xn) ⊆

A \ {a}. For example, if A = [0, 1] ∪ 2 then 2 is an isolated point of A (and is the only isolated
point of A).
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7.3. Properties of continuity.

Theorem 7.3.1. Suppose f and g are continuous. Then the following are all
continuous on their domains.

1. f + g
2. cf for any c ∈ R
3. fg
4. f/g
5. f ◦ g

The domain of each of the above functions is just the set of real numbers where
it is defined. Thus the domain of f + g and of fg is D(f) ∩ D(g); the domain of
cf is D(f); the domain of f/g is {x ∈ D(f)∩D(g) | g(x) 6= 0 }, and the domain of
f ◦ g is {x | x ∈ D(g) and g(x) ∈ D(f) }.

For the proofs of Theorem 7.3.1, see Reed Theorems 3.1.1 and 3.1.2 or the
MATH1115 notes Section 4. The proofs in terms of the sequence definition of
continuity are very easy, since the hard work has already been done in proving the
corresponding properties for limits of sequences.

See Examples 1–4 in Section 3.1 of Reed.

7.4. Deeper properties of continuous functions. These require the com-
pleteness property of the real numbers for their proofs.

Theorem 7.4.1. Every continuous function defined on a closed bounded in-
terval is bounded above and below and moreover has a maximum and a minimum
value.

Proof. A proof using the Bolzano-Weierstraß theorem is in Reed (Theorem
3.2.1 and 3.2.2 on pp 80,81).

The proof is fairly easy, since the hard work has already been done done in
proving the Bolzano-Weierstraß theorem.

Noe that a similar result is not true on other intervals. For example, consider
f(x) = 1/x on (0, 1].

Theorem 7.4.2 (Intermediate Value Theorem). Every continuous function de-
fined on a closed bounded interval takes all values between the values taken at the
endpoints.

Proof. See Reid p82. Again, the hard work has alredy been done in proving
the Bolzano-Weierstraß theorem.

Corollary 7.4.3. Let f be a continuous function defined on a closed bounded
interval with minimum value m and maximum value M . Then the range of f is
the interval [m,M ].

Proof. (See Reid p83.) The function f must take the values m and M at
points c and d (say) by Theorem 7.4.1. By the Intermediate Value Theorem applied
with the endpoints c and d, f must take all values between m and M . This proves
the theorem.

7.5. Uniform continuity. If we consider the ε–δ definition of continuity of
f at a point a as given in Theorem 7.1.2, we see that for any given ε the required
δ will normally depend on a. The steeper the graph of f near a, the smaller the
δ that is required. If for each ε > 0 there is some δ > 0 which will work for every
a ∈ D(f), then we say f is uniformly continuous.

More precisely:
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Definition 7.5.1. A function f is uniformly continuous if for every ε > 0 there
is a δ > 0 such that for every x1, x2 ∈ D(f):

|x1 − x2| ≤ δ implies |f(x1)− f(x2)| ≤ ε.

Any uniformly continuous function is certainly continuous. On the other hand,
the function 1/x with domain (0, 1], and the function x2 with domain R, are con-
tinuous but not uniformly continuous. (See Reed Example 2 page 84.)

However, we have the following important result for closed bounded intervals.

Theorem 7.5.2. Any continuous function defined on a closed bounded interval
is uniformly continuous.

Proof. See Reid p 85. I will discuss this in class.

There is an important case in which uniform continuity is easy to prove.

Definition 7.5.3. A function f is Lipschitz if there exists an M such that

|f(x1)− f(x2)| ≤M |x1 − x2|
for all x1, x2 in the domain of f . We say M is a Lipshitz constant for f .

This is equivalent to claiming that
|f(x1)− f(x2)|
|x1 − x2|

≤M

for all x1 6= x2 in the domain of f . In other words, the slope of the line joining any
two points on the graph of f is ≤M .

Proposition 7.5.4. If f is Lipschitz, then it is uniformly continuous.

Proof. Let ε > 0 be any positive number.
Since |f(x)− f(a)| ≤M |x− a| for any x, a ∈ Df , it follows that

|x− a| ≤ ε

M
⇒ |f(x)− f(a)| ≤ ε.

This proves uniform continuity.

It follows from the Mean Value Theorem that if the domain of f is an interval
I (not necessarily closed or bounded), f is differentiable and |f ′(x)| ≤ M on I,
then f is Lipschitz with Lipschitz constant M .

Proof. Suppose x1, x2 ∈ I and x1 < x2. Then
|f(x1)− f(x2)|
|x1 − x2|

= f ′(c)

for some x1 < c < x2 by the Mean Value Theorem. Since |f ′(c)| ≤M , we are done.
Similarly if x2 < x1.

♣Where did we use the fact that the domain of f is an interval? Give a counter
example in case the domain is not an interval.

There are examples of non-differentianble Lipschitz functions, such as the fol-
lowing “saw-tooth” function.
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8. Riemann Integration

Study Reed Chapter 3.3. Also see the MATH1116 notes.

8.1. Definition. The idea is that
∫ b
a

f (which we also write as
∫ b
a

f(x) dx)
should be a limit of lower and upper sums corresponding to rectangles, respectively
below and above the graph of f . See Reed page 87 for a diagram.

Suppose f is defined on the interval [a, b] and f is bounded. (At first you may
think of f as being continuous, but unless stated otherwise it is only necessary that
f be bounded.)

A partition P of [a, b] is any finite sequence of points (x0, . . . , xN ) such that

a = x0 < x1 < · · · < xN = b.

Let

mi = inf { f(x) | x ∈ [xi−1, xi] }, Mi = sup{ f(x) | x ∈ [xi−1, xi] },(6)

for i = 1, . . . , N .25 Then the lower and upper sum for the partition P are defined
by

LP (f) =
N∑
i=1

mi(xi − xi−1), UP (f) =
N∑
i=1

Mi(xi − xi−1).(7)

They correspond to the sum of the areas of the lower rectangles and the upper
rectangles respectively.

Adding points to a partition increases lower sums and decreases upper sums.
More precisely, if Q is a refinement of P , i.e. is a partition which includes all the
points in P , then

LP (f) ≤ LQ(f), UQ(f) ≤ UP (f).(8)

(See Reed Lemma 1 page 88 for the proof. Or see Lemma 7.4 page 72 of the 1998
AA1H notes — although the proof there is for continuous functions and so uses
max and min in the definition of upper and lower sums, the proof is essentially the
same for general bounded functions provide one uses instead sup and inf.)

Any lower sum is ≤ any upper sum:

LP (f) ≤ UQ(f).(9)

Here, P and Q are arbitrary partitions. The proof is by taking a common refinement
of P and Q and using (8). (See Reed Lemma 2 page 89, and the MATH1116 notes.)

For each partition P we have a number LP (f), and the set of all such numbers
is bounded above (by any upper sum). The supremum of this set of numbers is
denoted by

sup
P
{LP (f)} = sup{LP (f) | P is a partition of [a,b] }.

Similarly, the infimum of the set of all upper sums,

inf
P
{UP (f)} = inf{UP (f) | P is a partition of [a,b] },

exists. If these two numbers are equal, then we say f is (Riemann)26 integrable on
[a, b] and define ∫ b

a

f := inf
P
{UP (f)} = sup

P
{LP (f)}.(10)

25If f is continuous, we can replace sup and inf by max and min respectively.
26There is a much more powerful notion called Lebesgue integrable. This is more difficult to

develop, and will be treated in the first Analysis course in third year.
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(For an example of a function which is bounded but not Riemann integrable, see
Reed Problem 1 page 93.)

8.2. Basic results.

Theorem 8.2.1. If f is a continous function on a closed bounded interval [a, b],
then f is integrable on [a, b].

Proof. (See Reed Lemma 3 and Theorem 3.3.1 on pages 89, 90, or MATH1116
notes.)

The idea is first to show, essentially from the definitions of sup and inf, that it
is sufficient to prove for each ε > 0 that there exists a partition P for which

UP (f)− LP (f) < ε.(11)

The existence of such a P follows from the uniform continuity of f .

In order to numerically estimate
∫ b
a

f we can choose a point x∗i in each interval
[xi−1, xi] and compute the corresponding Riemann sum

RP (f) :=
N∑
i=1

f(x∗i )(xi − xi−1).

This is not a precise notation, since RP (f) depends on the points x∗i as well as P .
It is clear that

LP (f) ≤ RP (f) ≤ UP (f).

The following theorem justifies using Riemann sums. Let ‖P‖ denote the max-
imum length of the intervals in the partition P . Then

Theorem 8.2.2. Suppose f is Riemann integrable on the interval [a, b]. Let Pk
be a sequence of partitions of [a, b] such that limk→∞ ‖Pk‖ = 0 and suppose RPk(f)
is a corresponding sequence of Riemann sums. Then

RPk(f)→
∫ b

a

f as k →∞.

See Reed page 91 for the proof.

8.3. Properties of the Riemann integral. For proofs of the following the-
orems see Reed pages 91–93.

Theorem 8.3.1. Suppose f and g are continuous on [a, b] and c and d are
constants. Then ∫ b

a

(cf + dg) = c

∫ b

a

f + d

∫ b

a

g.

(See Reed Theorem 3.3.3 page 92 for te proof.)

Theorem 8.3.2. Suppose f and g are continuous on [a, b] and f ≤ g. Then∫ b

a

f ≤
∫ b

a

g.

Theorem 8.3.3. Suppose f is continuous on [a, b]. Then∣∣∣∫ b

a

f
∣∣∣ ≤ ∫ b

a

|f |.

Corollary 8.3.4. If f is continuous on [a, b] and |f | ≤M then∣∣∣∫ b

a

f
∣∣∣ ≤M(b− a).
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Theorem 8.3.5. Suppose f is continuous on [a, b] and a ≤ c ≤ b. Then∫ c

a

f +
∫ b

c

f =
∫ b

a

f.

Remark 8.3.1. Results analogous to those above are still true if we assume
the relevant functions are integrable, but not necessarily continuous. The proofs
are then a little different, but not that much more difficult. See “Calculus” by M.
Spivak, Chapter 13.

The fundamental connection between integration and differentiation is made in
Reed in Section 4.2; I return to this after we discuss differentiation. In particular,
if f is continuous on [a, b], then∫ b

a

f = F (b)− F (a)

where F ′(x) = f(x) for all x ∈ [a, b]. This often gives a convenient way of finding
integrals.

8.4. Riemann integration for discontinuous functions. See Reed Section
3.5. This material will be done “lightly”.

• Example 1 of Reed : If f is the function defined on [0, 1] by

f(x) =

{
1 0 ≤ x ≤ 1 and x irrational
0 0 ≤ x ≤ 1 and x rational

then f is not Riemann integrable, since every upper sum is 1 and every lower sum
is 0.

• However, any bounded monotone increasing27 (or decreasing) function on an
interval [a, b] is Riemann integrable. See Reed Theorem 3.5.1.

A monotone function can have an infinite number of points where it is discon-
tinuous (Reed Q8 p112). Also, the sum of two Riemann integrable functions is
Riemann integrable (Reed Q13 p112). This shows that many quite “bad” (but still
bounded) functions can be Riemann integrable.

• The next result (Theorems 3.5.2, 3) is that if a bounded function is continuous
except at a finite number of points on [a, b], then it is Riemann integrable on [a, b].
(Interesting examples are f(x) = sin 1/x if −1 ≤ x ≤ 1 & x 6= 0, f(0) = 0; and
f(x) = sin 1/x if 0 < x ≤ 1, f(0) = 0; c.f. Reed Example 2.)

Moreover, if the points of discontinuity are a1 < a2 < · · · < ak and we set
a0 = a, ak+1 = b, then ∫ b

a

f =
j=k+1∑
j=1

∫ aj

aj−1

f,

and ∫ aj

aj−1

f = lim
δ→0+

∫ aj−δ

aj−1+δ

f.

Since f is continuous on each interval [aj−1 + δ, aj− δ], we can often find
∫ aj−δ
aj−1+δ

f

by standard methods for computing integrals (i.e. find a function whose derivative
is f) or by numerical methods, and then take the limit.

(
By the one-sided limit

limδ→0+ we mean that δ is restricted to be positive; Reed writes limδ↘0 to mean
the same thing. See Reed p 108 for the definition of a one-sided limit in terms of

27f is monotone increasing if f(x1) ≤ f(x2) whenever x1 < x2.
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sequences. The “ε–δ” definition is in Definition 3.13 p 29 of the AA1H 1998 Notes.
The two definitions are equivalent by the same argument as used in the proof of
similar equivalences for continuity and also for ordinary limits, see Reid p 78.

)
• A particular case of importance is when the left and right limits of f exist at
the discontinuity points aj . The function f then is said to be piecewise continuous.
In this case if the function fj is defined on [aj−1, aj ] by

fj(x) =


f(x) aj−1 < x < aj

limx→a+
j−1

f(x) x = aj−1

limx→a−j
f(x) x = aj ,

then fj is continuous on [aj−1, aj ],∫ b

a

f =
j=k+1∑
j=1

∫ aj

aj−1

fj ,

and each
∫ aj
aj−1

fj can often be computed by standard methods. See Reed Example 3
p 108 and Corollary 3.5.4 p 109.

8.5. Improper Riemann integrals. See Reed Section 3.8. This material
will be done “lightly”.

In previous situations we had a bounded function with a finite number of dis-
continuities. The Riemann integral existed according to our definition, and we saw
that it could be obtained by computing the Riemann integrals of certain continuous
functions and by perhaps taking limits.

If the function is not bounded, or the domain of integration is an infinite in-
terval, the Riemann integral can often be defined by taking limits. The Riemann
integral is then called an improper integral. For details and examples of the follow-
ing, see Reed Section 3.6.

For example, if f is continuous on [a, b) then we define∫ b

a

f = lim
δ→0+

∫ b−δ

a

f,

provided the limit exists.
If f is continuous on [a,∞) then we define∫ ∞

a

f = lim
b→∞

∫ b

a

f,

provided the limit exists.(
I do not think that Reed actually defines what is meant by

lim
x→∞

g(x),

where here g(x) =
∫ x
a

f . But it is clear what the definition in terms of sequences
should be. Namely,

limx→∞ g(x) = L if whenever a sequence xn →∞ then g(xn)→ L.
The definition of xn → ∞ (i.e. (xn) “diverges” to infinity), is the natural one and
is given on p 32 of Reed.

There is also a natural, and equivalent, definition which does not involve se-
quences. Namely,

limx→∞ g(x) = L if for every ε > 0 there is a real number K

such that x ≥ K implies |g(x)− L| ≤ ε.
)
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Similar definitions apply for integrals over (a, b], (a, b), R , etc.
Note the subtlety in Reed Example 5 p 116. The integral

∫∞
1

sin x
x dx exists in

the limit sense defined above, because of “cancellation” of successive positive and
negative bumps, but the “area” above the axis and the “area” below the axis is
infinite. This is analogous to the fact that the series 1 − 1

2 + 1
3 −

1
4 . . . converges,

although the series of positive and negative terms each diverge.
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9. Differentiation

9.1. Material from last year. Read Sections 4.1, 4.2 of Reed and MATH1116
Notes.

Suppose f : S → R, x ∈ S, and there is some open interval containing x which
is a subset of S. (Usually S will itself be an interval, but not necessarily open or
bounded).

Then f ′(x), the derivative of f at x is defined in the usual way as

lim
h→0

f(x + h)− f(x)
h

.

If S = [a, b], it is also convenient to define the derivatives at the endpoints a
and b of S in the natural way by restricting h to be > 0 or < 0 respectively. See
Reed p 126, three paragraphs from the bottom, and p 108 (or MATH1116 notes).

In Reed Section 4.1 note in particular Theorem 4.1 — differentiability at any
point implies continuity there, Theorem 4.2 (the usual rules for differentiating sums,
producs and quotients), and Theorem 4.3 (the chain rule; you may prefer the proof
given in Adams).

The next main result is the justification for using derivatives to find maximum
(and similarly minimum) points; if a continuous function takes a maximum at c,
and f ′(c) exists, then f ′(c) = 0.

9.2. Fundamental theorem of calculus. This connects differentiation and
integration, see Reed Theorems 4.2.4 and 4.2.5. (The proof in Reed of Theo-
rem 4.2.4 is different from that in the MATH116 notes.)

9.3. Mean value theorem and Taylor’s theorem. See Reed Section 4.3
and Adams pages 285–290, 584, 585.

The Mean Value Theorem (Reed Theorem 4.2.3) says geometrically that “the
slope of the chord joining two points on the graph of a differentiable function equals
the derivative at some point between them”.

Taylor’s Theorem, particularly with the Legendre form of the remainder as in
Reed page 136, Theorem 4.3.1, is a generalisation.

Note also how L’Hôpital’s Rule, Theorem 4.3.2 page 138, follows from Taylor’s
theorem.

9.4. Newton’s method. See Reed Section 4.4 and Adams pages 192–195.

Newton’s method, and its generalisation to finding zeros of functions f : Rn →
Rn for n > 1 (see Adams pages 745–748), is very important for both computational
and theoretical reasons.

As we see in Reed page 141, if xn is the nth approximatiion to the solution x
of f(x) = 0, then

xn+1 = xn −
f(xn)
f ′(xn)

.

Remarks on proof of Theorem 4.4.1. We want to estimate |xn+1 − x| in
terms of |xn − x|.

Applying the above formula, and both Taylor’s Theorem and the Mean Value
Theorem, gives

|xn+1 − x| ≤ 1
f ′(xn)

(
f ′′(τn) +

f ′′(τn)
2!

)
|xn − x|2

for some τn and τn between xn and x, see Reed page 143 formula (14).
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Assume f ′(x) 6= 0 and f is C2 in some interval containing x.28 Then provided
|xn − x| < ε (say), it follows that

1
f ′(xn)

(
f ′′(τn) +

f ′′(τn)
2!

)
≤ C(12)

for some constant C (depending on f). Hence

|xn+1 − x| ≤ C |xn − x|2.(13)

We say that (xn) converges to x quadratically fast. See the discusion at the end of
the first paragraph on page 144 of Reed.

The only remaining point in the proof of Theorem 4.4.1 in Reed, pages 142,143,
is to show that if |x1 − x| < ε (and so (13) is true for n = 1) then |xn − x| < ε for
all n (and so (13) is true for all n). But from (13) with n = 1 we have

|x2 − x| ≤ 1
2
|x1 − x|

provided |x1 − x| ≤ 1
2C . Thus x2 is even closer to x than x1 and so (13) is true

with n = 2, etc.

Note that even though the proof only explicitly states linear convergence in
(16), in fact it also gives the much better quadratic quadratic convergence as noted
on page 144 line 4.

9.5. Monotonic functions.
See Reed Section 4.5, Adams Section 4.1 and pages 258–260.

A function f : I → R, is strictly increasing if x < y implies f(x) < f(y). Unless
stated otherwise, we alsways take the domain I to be an interval. Similarly one
defines strictly decreasing. A function is strictly monotonic if it is either strictly
increasing or strictly decreasing.

If f is differentiable on I and f ′ > 0, then it is strictly increasing (Reed page
150, problem 1. HINT: Use the Mean Value Theorem). But the derivative of a
strictly increasing function may somewhere be zero, e.g. f(x) = x3.

A strictly monotonic function f is one-one and so has an inverse f−1, defined
by

f−1(y) = the unique x such that f(x) = y.

The domain of f−1 is the range of f and the range of f−1 is the domain of f .
If f : I → R is strictly monotonic and continuous, then its range is an interval

and its inverse exists and is strictly monotonic and continuous. See Reed page 83,
Corollary 3.2.4 and page 147 Theorem 4.5.1.

28That is, f ′ and f ′′ exist and are continuous.
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If f : I → R is strictly monotonic and continuous, and is differentiable at a
with f ′(a) 6= 0, then f−1 is differentiable at b = f(a) and29

(f−1)′(b) =
1

f ′(a)

If f : I → R is strictly monotonic and continuous, and everywhere differen-
tiable with f ′(x) 6= 0, then by the above result we have that f−1 is everywhere
differentiable. Moreover, the derivative is continuous, since

(f−1)′(y) =
1

f ′(f−1(y))

by the previous formula, and both f−1 and f are continuous. (This is Reed Corol-
lary 4.5.3)

The change of variables formula, Theorem 4.5.4, does not really require φ to
be strictly increasing, as noted in Reed page 151, problem 6 (See Adams page 326,
Theorem 6, for the simpler proof of this more general fact, using the Fundamental
Theorem of Calculus). The proof in Reed does have the advantage that it generalises
to situations where the Fundamental Theoorem cannot be applied.

The result of Theorem 4.5.5 also follows from the Fundamental Theorem of
Calculus, see Reed page 151, problem 7.

29Loosely speaking, dy
dx

= 1/ dx
dy

. But this notation can cause problems and be ambiguous.
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10. Basic metric and topological notions in Rn

See Adams page 643 (third edition), or (better) fourth edition pages 601,602.
See also Reed problem 10 page 40 and the first two paragraphs in Section 4.6. But
we do considerably more.

10.1. Euclidean n-space. We define

Rn = { (x1, . . . , xn) | x1, . . . , xn ∈ R }.
Thus Rn denotes the set of all (ordered) n-tuples (x1, . . . , xn) of real numbers.

We think of R1, R2 and R3 as the real line, the plane and 3-space respectively.
But for n ≥ 4 we cannot think of Rn as consisting of points in physical space.
Instead, we usually think of points in Rn as just being given algebraically by n-
tuples (x1, . . . , xn) of real numbers. (We sometimes say (x1, . . . , xn) is a vector, but
then you should think of a vector as a point, rather than as an “arrow”.)

In R2 and R3 we usually denote the coordinates of a point by (x, y) and (x, y, z),
but in higer dimensions we usually use the notation (x1, . . . , xn), etc.

Although we usually think of points in Rn as n-tuples, rather than physical
points, we are still motivated and guided by the geometry in the two and three
dimensnional cases. So we still speak of “points” in Rn

We define the (Euclidean) distance30 between x = (x1, . . . , xn) and y = (y1, . . . , yn)
by

d(x,y) =
√

(x1 − y1)2 + · · ·+ (xn − yn)2.

This agrees with the usual distance in case n = 1, 2, 3.
We also call the set of points (x1, . . . , xn) ∈ Rn satisfying any equation of the

form

a1x1 + · · ·+ anxn = b,

a hyperplane. Sometimes we restrict this definition to the case b = 0 (in which case
the hyperplane “passes through” the origin).

10.2. The Triangle and Cauchy-Schwarz inequalities. The Euclidean
distance function satisfies three important properties. Any function d on a set S
(not necessarily Rn) which satisfies these properties is called a metric, and S is
called a metric space with metric d. We will discuss general metrics later. But you
should observe that, unless noted or otherwise clear from the context, the proofs
and definitions in Sections 10–14 carry over directly to general metric spaces. We
discuss this in more detail in Section 15.

Theorem 10.2.1. Let d denote the Euclidean distance function in Rn. Then
1. d(x,y) ≥ 0; d(x,y) = 0 iff x = y. (positivity)
2. d(x,y) = d(y,x). (symmetry)
3. d(x,y) ≤ d(x, z) + d(z,y). (triangle inequality)

Proof. The first two properties are immediate.
The third follows from the Cauchy-Schwarz inequality, which we prove in the

next theorem.
To see this let

ui = xi − zi, vi = zi − yi,

Then

d(x,y)2 =
∑
i

(xi − yi)2 =
∑
i

(xi − zi + zi − yi)2

30Later we will define other distance functions (i.e. metrics, see the next section) on Rn, but
the Euclidean distance function is the most important.
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=
∑
i

(ui + vi)2 =
∑
i

u2
i + 2uivi + v2

i

=
∑
i

u2
i + 2

∑
i

uivi +
∑
i

v2
i

≤
∑
i

u2
i + 2

(∑
i

u2
i

)1/2(∑
i

u2
i

)1/2

+
∑
i

v2
i

(by the Cauchy-Schwarz inequality)

=

(∑
i

u2
i

) 1
2

+

(∑
i

v2
i

) 1
2
2

=
(
d(x, z) + d(z,y)

)2

.

The triangle inequality now follows.

The following is a fundamental inequality.31 Here is one of a number of possible
proofs.

Theorem 10.2.2 (Cauchy-Schwarz inequality). Suppose (u1, . . . , un) ∈ Rn and
(v1, . . . , vn) ∈ Rn. Then∣∣∣∣∑

i

uivi

∣∣∣∣ ≤ (∑
i

u2
i

)1/2(∑
i

v2
i

)1/2

.(14)

Moreover, equality holds iff at least one of (u1, . . . , un), (v1, . . . , vn) is a multiple of
the other (in particular if one is (0, . . . , 0)).

Proof. Let

f(t) =
∑
i

(ui + tvi)2 =
∑
i

u2
i + 2t

∑
i

uivi + t2
∑
i

v2
i .

Then f is a quadratic in t (provided (v1, . . . , vn) 6= (0, . . . , 0)), and from the first
expression for f(t), f(t) ≥ 0 for all t.

It follows that f(t) = 0 has no real roots (in case f(t) > 0 for all t) or two
equal real roots (in case f(t) = 0 for some t). Hence

4
(∑

i

uivi

)2

− 4
∑
i

u2
i

∑
i

v2
i ≤ 0.(15)

This immediately gives the Cauchy-Schwarz inequality.
If one of (u1, . . . , un), (v1, . . . , vn) is (0, . . . , 0) or is a multiple of the other then

equality holds in (14). (why? )
Conversely, if equality holds in (14), i.e. in (15), and (v1, . . . , vn) 6= (0, . . . , 0),

then f(t) is a quadratic (since the coefficient of t2 is non-zero) with equal roots and
in particular f(t) = 0 for some t. This t gives u = −tv, from the first expression
for f(t).

This completes the proof of the theorem.

Remark 10.2.1. In the preceding we discussed the (standard) metric on Rn.
It can be defined from the (standard) norm and conversely. That is

d(x,y) = ‖x− y‖, and ‖x‖ = d(0,x)

The triangle inequlity for the metric follows easily from the triangle inequality
for the norm (i.e. ‖x + y‖ ≤ ‖x‖+ ‖y‖), and conversely (Exercise).

31The Cauchy-Schwarz inequality can be interpreted in terms of inner products as saying
that |u · v| ≤ ‖u‖ ‖v‖. But we will not need to refer to inner products here.
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10.3. Preliminary Remarks on Metric Spaces. Any function d on a set
M (not necessarily Rn) which satisfies the three properties in Theorem 10.2.1 is
called a metric, andM together with d is called a metric space.

You should now study Section 15.1, except possibly for Example 15.1.3.
We will discuss general metrics later. But you should observe that unless noted

or otherwise clear from context, the proofs and definitions in Sections 10–14 carry
over directly to general metric spaces. We discuss this in more detail in Section 15.

10.4. More on intersections and unions. The intersection and union of
two sets was defined in Reed page 7. The intersection and union of more than
two sets is defined similarly. The intersection and union of a (possibly infinite)
collection of sets indexed by the members of some set J are defined by⋂

λ∈J
Aλ = {x | x ∈ Aλ for all λ ∈ J },⋃

λ∈J
Aλ = {x | x ∈ Aλ for some λ ∈ J }.

For example: ⋂
n∈N

[
0,

1
n

]
= {0},

⋂
n∈N

(
0,

1
n

)
= ∅,

⋂
n∈N

(
− 1

n
,
1
n

)
= {0},⋂

n∈N
[n,∞) = ∅,⋃

r∈Q
(r − ε, r + ε) = R (for any fixed ε > 0),

⋃
r∈R
{r} = R.

It is an easy generalisation of De Morgan’s law that

(A1 ∪ · · · ∪Ak)c = Ac
1 ∩ · · · ∩Ac

k.

More generally, ( ⋃
λ∈J

Aλ

)c
=

⋂
λ∈J

Ac
λ.

Also,

(A1 ∩ · · · ∩Ak)c = Ac
1 ∪ · · · ∪Ac

k

and ( ⋂
λ∈J

Aλ

)c
=

⋃
λ∈J

Ac
λ.

10.5. Open sets. The definitions in this and the following sections generalise
the notions of open and closed intervals and endpoints on the real line to Rn. You
should think of the cases n = 2, 3.

A neighbourhood of a point a ∈ Rn is a set of the form

Br(a) = {x ∈ Rn | d(x,a) < r }



•
S

boundary pointpoints not in S
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for some r > 0. We also say that Br(a) is the open ball of radius r centred at a.
In case n = 1 we say Br(a) is an open interval centred at a, and in case n = 2 also
call it the open disc of radius r centred at a.

Definition 10.5.1. A set S ⊆ Rn is open (in Rn)32 if for every a ∈ S there is
a neighbourhood of a which is a subset of S.

Every neighbourhood is itself open (why? ). Other examples in R2 are
1. {x ∈ R2 | d(x,a) > r },
2. { (x, y) | x > 0 },
3. { (x, y) | y > x2 },
4. { (x, y) | y 6= x2 },
5. { (x, y) | x > 3 or y < x2 }, etc.

Typically, sets described by strict inequalities “<”, “>”, or “6=”, are open33. An
example in R3 is

{ (x, y, z) | x2 + y2 < z2 and sinx < cos y }.

By the following theorem, the intersection of a finite number of open sets is
open, but the union of any number (possibly infinite) of open sets is open. The
third example in the previous section shows that the intersection of an infinite
collection of open sets need not be open.

Theorem 10.5.2.

1. The sets ∅ and Rn are both open.
2. If A1, . . . , Ak is a finite collection of open subsets of Rn, then their inter-

section A1 ∩ · · · ∩Ak is open.
3. If Aλ is an open subset of Rn for each λ ∈ J , then the union

⋃
λ Aλ of all

the sets Aλ is also open.

Proof.

1. The first part is trivial (the empty set is open because every point in it certainly
has the required property!)
2. Consider any point a ∈ A1 ∩ · · · ∩ Ak. Then a ∈ Ak for every k, and since
Ak is open there is a real number rk > 0 such that Brk(a) ⊆ Ak. Choosing r =

32We sometimes say S is open in Rn because there is a more general notion of S being open
in E for any set E such that S ⊆ E. When we say S is open we will always mean open in Rn,
unless otherwise stated.

33Let S = { (x1, . . . , xn) | f(x1, . . . , xn) > g(x1, . . . , xn) }. If f and g are continuous (we
rigorously define continuity for functions of more than one variable later) and a = (a1, . . . , an)
is a point in S, then all points in a sufficiently small neighbourhood of a will also satisfy the
corresponding inequality and so be in S — see later. It follows that S is open.

If a set is described by a finite number of strict inequalities in terms of “and” and “or”, then
it will be obtained by taking finite unions and intersections of open sets as above, and hence be
open by Theorem 10.5.2.
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min{r1, . . . , rk} we see that r > 0, and Br(a) ⊆ Ak for each k. It follows34 that

Br(a) ⊆ A1 ∩ · · · ∩Ak.

Hence A1 ∩ · · · ∩Ak is open.
3. Consider any point a ∈

⋃
λ∈J Aλ. Then a ∈ Aλ for some λ ∈ J . For this λ

there is an r > 0 such that Br(a) ⊆ Aλ. It follows (from the definition of
⋃

) that

Br(a) ⊆
⋃
λ

Aλ.

Hence
⋃
λ∈J Aλ is open.

The reason the proof of 2. does not show the intersection of an infinite number
of open sets is always open is that we would need to take r to be the infimum of an
infinite set of positive numbers. Such an infimum may be 0. Consider, for example,⋂
n∈N

(
− 1
n , 1

n

)
= {0} from the previous section. If a = 0 then rn = 1/n, and the

infimum of all the rn is 0.

10.6. Closed sets.

Definition 10.6.1. A set C is closed (in Rn)35 if its complement (in Rn) is
open.

If, in the examples after Definition 10.5.1, “>”, “<” and 6= are replaced by
“≥”, “≤” and =, then we have examples of closed sets. Generally, sets defined in
terms of nonstrict inequalities and = are closed.36 Closed intervals in R are closed
sets.

Theorem 10.6.2.

1. The sets ∅ and Rn are both closed.
2. If A1, . . . , Ak is a finite collection of closed subsets of Rn, then their union

A1 ∪ · · · ∪Ak is closed.
3. If Aλ is a closed subset of Rn for each λ ∈ J , then the intersection

⋂
λ Aλ

of all the sets Aλ∈J is also closed.

Proof.

1. Since ∅ and Rn are complements of each other, the result follows from the
corresponding part of the previous theorem.
2. By DeMorgan’s Law,

(A1 ∪ · · · ∪Ak)c = Ac
1 ∩ · · · ∩Ac

k.

Since Ac
1 ∩ · · · ∩ Ac

k is open from part 2 of the previous theorem, it follows that
(A1 ∪ · · · ∪Ak) is closed.
3. The proof is similar to 2. Namely,( ⋂

λ∈J
Aλ

)c
=

⋃
λ∈J

Ac
λ,

and so the result follows from 3 in the previous theorem.

34If B ⊆ A1, . . . , B ⊆ Ak, then it follows from the definition of A1 ∩ · · · ∩ Ak that B ⊆
A1 ∩ · · · ∩Ak.

35By closed we will always mean closed in Rn. But as for open sets, there is a more general
concept of being closed in an arbitrary E such that S ⊆ E.

36The complement of such a set is a set defined in terms of strict inequalities, and so is open.
See the previous section.
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10.7. Topological Spaces*. Motivated by the idea of open sets in Rn we
make the following definition.

Definition 10.7.1. A set S, together with a collection of subsets of S (which
are called the open sets in S) which satisfy the following three properties, is called
a topological space.

1. The sets ∅ and S are both open.
2. If A1, . . . , Ak is a finite collection of open subsets of S, then their intersection

A1 ∩ · · · ∩Ak is open.
3. If Aλ is an open subset of S for each λ ∈ J , then the union

⋃
λ Aλ of all the

sets Aλ is also open.

Essentially the same arguments as used in the case of Rn with the Euclidean
metric d allow us to define the notion of a neighbourhood of a point in any metric
space (M, d), and then to define open sets in any metric space, and then to show
as in Theorem 10.5.2 that this gives a topological space.

In any topological space (which as we have just seen includes all metric spaces)
one can define the notion of a closed set in an analogous way to that in Section 10.6
and prove the analogue of Theorem 10.6.2. The notion of boundary, interior and
exterior of an open set in any topologoical space is defined as in Section 10.8.

The theory of topological spaces is fundamental in contemporary mathematics.

10.8. Boundary, Interior and Exterior.

Definition 10.8.1. The point a is a boundary point of S if every neighbour-
hood of a contains both points in S and points not in S. The boundary of S (bdryS
or ∂S) is the set of boundary points of S.

Thus ∂Br(a) is the set of points whose distance from a equals r. See the
diagram in Section 10.5.

Definition 10.8.2. The point a is an interior point of S if a ∈ S but a is not
a boundary point of S. The point a is an exterior point of S if a ∈ Sc but a is not
a boundary point of S.

The interior of S (intS) consists of all interior points of S. The exterior of S
(ext S) consists of all exterior points of S.

It follows that:

• a is an interior point of S iff Br(a) ⊆ S for some r > 0,
• a is an exterior point of S iff Br(a) ⊆ Sc for some r > 0
• S = intS ∪∂S ∪ ext S, and every point in Rn is in exactly one of these three

sets.

Why?
Do exercises 1–8, page 647 of Adams, to reinforce the basic definitions.

10.9. Cantor Set. We next sketch a sequence of approximations A = A(0),
A(1), A(2), . . . to the Cantor Set C, the most basic fractal.
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We can think of C as obtained by first removing the open middle third (1/3, 2/3)
from [0, 1]; then removing the open middle third from each of the two closed intervals
which remain; then removing the open middle third from each of the four closed
interval which remain; etc.

More precisely, let

A = A(0) = [0, 1]

A(1) = [0, 1/3] ∪ [2/3, 1]

A(2) = [0, 1/9] ∪ [2/9, 1/3] ∪ [2/3, 7/9] ∪ [8/9, 1]
...

Let C =
⋂
n≥0 A(n). Since C is the intersection of a family of closed sets, C is

closed.
Note that A(n+1) ⊆ A(n) for all n and so the A(n) form a decreasing family of

sets.

Consider the ternary expansion of numbers x ∈ [0, 1], i.e. write each x ∈ [0, 1]
in the form

x = .a1a2 . . . an . . . =
a1

3
+

a2

32
+ · · ·+ an

3n
+ · · ·(16)

where an = 0, 1 or 2. Each number has either one or two such representations, and
the only way x can have two representations is if

x = .a1a2 . . . an222 · · · = .a1a2 . . . an−1(an+1)000 . . .

for some an = 0 or 1. For example, .210222 · · · = .211000 . . . .
Note the following:

• x ∈ A(n) iff x has an expansion of the form (16) with each of a1, . . . , an
taking the values 0 or 2.
• It follows that x ∈ C iff x has an expansion of the form (16) with every an

taking the values 0 or 2.
• Each endpoint of any of the 2n intervals associated with A(n) has an expan-

sion of the form (16) with each of a1, . . . , an taking the values 0 or 2 and
the remaining ai either all taking the value 0 or all taking the value 2.

Exercise: Show that C is uncountable.

Next let

S1(x) =
1
3
x, S2(x) = 1 +

1
3
(x− 1).

Notice that S1 is a dilation with dilation ratio 1/3 and fixed point 0. Similarly, S2

is a dilation with dilation ratio 1/3 and fixed point 1.
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Then

A(n+1) = S1[A(n)] ∪ S2[A(n)].

Moreover,

C = S1[C] ∪ S2[C].

The Cantor set is a fractal. It is composed of two parts each obtained from the
original set by contracting by scaling (by 1/3).

If you think of a one, two or three dimensional set (e.g. line, square or cube),
contracting by 1/3 should give a set which is 1/3d of the original set in “size”.

Thus if d is the “dimension” of the Cantor set, then we expect
1
2

=
1
3d

.

This gives log 2 = d log 3 or d = log 2/ log 3 ≈ .6309.

10.10. Product sets.

Theorem 10.10.1. If A ⊆ Rm and B ⊆ Rn are both open (closed) then so is
the product A×B ⊆ Rm+n.

Proof. For simplicity of notation, take m = n = 1.

First suppose A and B are open.
If a = (x, y) ∈ A×B ⊆ R2 then x ∈ A and y ∈ B. Choose r and s so Br(x) ⊆ A

and Bs(y) ⊆ B.
Let t = min{r, s}. Then

Bt(a) ⊆ Br(x)×Bs(y) ⊆ A×B.

The first “⊆” is because

(x0, y0) ∈ Bt(a) ⇒ d
(
(x0, y0), (x, y)

)
< t

⇒ d(x0, x) < t and d(y0, y) < t

⇒ x0 ∈ Bt(x) and y0 ∈ Bt(y)

⇒ (x0, y0) ∈ Br(x)×Bs(y).

Since Bt(a) ⊆ A×B it follows that A×B is open.

Next suppose A and B are closed. Note that

(A×B)c = Ac × R ∪ R×Bc,
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since (x, y) 6∈ A × B iff (either x 6∈ A or y 6∈ B (or both)). Hence the right side
is the union of two open sets by the above, and hence is open. Hence A × B is
closed.
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11. Sequences in Rp

See Reed Problem 8 page 51, Problems 10–12 on page 59 and the first Definition
on page 152. But we do much more!

11.1. Convergence.

Definition 11.1.1. A sequence of points (xn) from Rp converges to x if d(xn,x)→ 0.

Thus the notion of convergence of a sequence from Rp is reduced to the notion
of convergence of a sequence of real numbers to 0.

Example 11.1.2. Let θ ∈ R and a = (x∗, y∗) ∈ R2 be fixed, and let

an =
(
x∗ +

1
n

cos nθ, y∗ +
1
n

sinnθ
)
.

Then an → a as n → ∞. The sequence (an) spirals around a with d(an,a) = 1
n

and with rotation by the angle θ in passing from an to an+1.

The next theorem shows that a sequence from Rp converges iff each sequence
of components converges. Think of the case p = 2.

Proposition 11.1.3. The sequence xn → x iff x
(k)
n → x(k) for k = 1, . . . , p.

Proof. Assume xn → x. Then d(xn,x) → 0. Since |x(k)
n − x(k)| ≤ d(xn,x),

it follows that |x(k)
n − x(k)| → 0 and so x

(k)
n → x(k), as n→∞.

Next assume x
(k)
n → x(k) for each k, i.e. |x(k)

n − x(k)| → 0, as n→∞. Since

d(xn,x) =
√

(x(1)
n − x(1))2 + · · ·+ (x(p)

n − x(p))2,

it follows that d(xn,x)→ 0 and so xn → x.

11.2. Closed sets. The reason we call a set “closed” is that it is closed under
the operation of taking limits of any sequence of points from the set. This is the
content of the next theorem.

Theorem 11.2.1. A set S ⊆ Rp is closed iff every convergent sequence (xn) ⊆
S has its limit in S.

Proof. First suppose S is closed. Let (xn) ⊆ S be a convergent sequence with
limit x.

Assume x 6∈ S, i.e. x ∈ Sc. Since Sc is open, there is an r > 0 such that
Br(x) ⊆ Sc. But since xn → x, ultimately37 xn ∈ Br(x) ⊆ Sc.

37Ultimately means there is an N such that this is true for all n ≥ N .



If xn→ x  then ultimately xn ε Br(x) 

B1/n(x)

     If for each n there is a member of  S in B 1/n(x ) , 
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1/n
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This contradicts the fact xn ∈ S for all n. Hence the assumption is wrong and so
x ∈ S

Next suppose that every convergent sequence (xn) ⊆ S has its limit in S.
Assume S is not closed, i.e. Sc is not open. Then there is a point x ∈ Sc such that
for no r > 0 is it true that Br(x) ⊆ Sc. In particular, for each natural number n
there is a point in B1/n(x) which belongs to S. Choose such a point and call it xn.
Then xn → x since d(xn,x) ≤ 1/n→ 0.

This means that the sequence (xn) ⊆ S but its limit is not in S. This is a
contradiction and so the assumption is wrong. Hence S is closed.

11.3. Bounded sets.

Definition 11.3.1. A set S ⊆ Rp is bounded if there is a point a ∈ Rp and a
real number R such that S ⊆ BR(a).

A sequence (xn) is bounded if there is a point a ∈ Rp and a real number R such
that xn ∈ BR(a) for every n.

Thus a sequence is bounded iff the corresponding set of members is bounded.

Proposition 11.3.2. A set is bounded iff there is a ball (of finite radius) cen-
tred at the origin which includes the set.

Proof. This is clear in R2 from a diagram. It is proved from the triangle
inequality as follows.

Suppose S ⊆ BR(a). Let r = d(a,0). Then for any x ∈ S,

d(x,0) ≤ d(x,a) + d(a,0) < R + r.

Hence S ⊆ BR+r(0).
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The following theorem says that a set S is bounded iff its projection on to each
of the axes is bounded. The projection onto the kth axis is defined by

Pk(S) = { a | x ∈ S for some x whose kth component is a }.

Theorem 11.3.3. A set S ⊆ Rp is bounded iff Pk(S) is bounded for each k =
1, . . . , p.

Proof. If S ⊆ BR(0) then each Pk(S) ⊆ [−R, R] and so is bounded.
Conversely, if each Pk(S) is bounded then by choosing the largest interval, we

may assume Pk(S) ⊆ [−M, M ] for every k. It follows that if x ∈ S then every
component of x is at most M in absolute value. It follows that

|x| ≤
√

kM2,

i.e. S ⊆ BR(0) where R =
√

kM .

In particular, if a sequence of points from Rp is bounded, then so are the
sequences of real numbers corresponding to the first component, to the second
component, etc.

Proposition 11.3.4. A convergent sequence is bounded.

Proof. Suppose xn → x. Then ultimately xn ∈ B1(x), say for n ≥ N , and
so the set of terms {xn | n ≥ N } is bounded. The set {x1, . . . ,xN−1} is also
bounded (being finite) and so the set of all terms is bounded, being the union of
two bounded sets. In other words, the sequence is bounded.
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11.4. Bolzano-Weierstraß theorem. As for sequences of real numbers, a
subsequence of a sequence is obtained by skipping terms.

Proposition 11.4.1. If (xn) ⊆ Rp and xn → x, then any subsequence also
converges to x.

Proof. Let (xn(k))k≥1 be a subsequence of (xn). Suppose ε > 0 is given.
Since xn → x there is an integer N such that

k ≥ N ⇒ d(xk,x) ≤ ε.

But if k ≥ N then also n(k) ≥ N and so

k ≥ N ⇒ d(xn(k),x) ≤ ε.

That is, xn(k) → x.

The following theorem is analogous to the Bolzano-Weierstraß Theorem 5.2.2
for real numbers, and in fact follows from it.

Theorem 11.4.2 (Bolzano-Weierstraß Theorem). If a sequence (an) ⊆ Rp is
bounded then it has a convergent subsequence. If all members of (an) belong to a
closed bounded set S, then so does the limit of any convergent subsequence of (an).

Proof. For notational simplicity we prove the case p = 2, but clearly the proof
easily generalises to p > 2.

Suppose then that (an) ⊆ Rp is bounded.
Write an = (xn, yn). Then the sequences (xn) and (yn) are also bounded (see

the paragraph after Theorem 11.3.3).
Let (xn(k)) be a convergent subsequence of (xn) (this uses the Bolzano-Weierstraß

Theorem 5.2.2 for real sequences).
Now consider the sequence (xn(k), yn(k)). Let (yn′(k)) be a convergent subse-

quence of (yn(k)) (again by the Bolzano-Weierstraß Theorem for real sequences).
Note that (xn′(k)) is a subsequence of the convergent sequence (xn(k)), and so

also converges.
Since (xn′(k)) and (yn′(k)) converge, so does (an′(k)) = ((xn′(k), yn′(k))).38

Finally, since S is closed, any convergent subsequence from S must have its
limit in S.

.

11.5. Cauchy sequences.

Definition 11.5.1. A sequence (xn) is a Cauchy sequence if for any ε > 0
there is a corresponding N such that

m,n ≥ N ⇒ d (xm,xn) ≤ ε.

That is, ultimately any two members of the sequence (not necessarily consec-
utive members) are within ε of each another.

38After a bit of practice, we would probably write the previous argument as follow:

Proof. Since (an) ⊆ Rp, where an = (xn, yn), is bounded, so is each of the component
sequences.

By the Bolzano-Weierstraß Theorem for real sequences, on passing to a subsequence (but
without changing notation) we may assume (xn) converges. Again by the Bolzano-Weierstraß
Theorem for real sequences, on passing to a further subsequence (without changing notation) we
may assume that (yn) also converges. (This gives a new subsequence (xn), but it converges since
any subsequence of a convergent sequence is also convergent).

Since the subsequences (xn) and (yn) converge, so does the subsequence (an) = ((xn, yn)).
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Proposition 11.5.2. The sequence (xn)n≥1 in Rp is Cauchy iff the component
sequences (x(k)

n )n≥1 (of real numbers) are Cauchy for k = 1, . . . , p.

Proof. (The proof is similar to that for Proposition 11.1.3.)

Assume (xn) is Cauchy. Since |x(k)
m −x

(k)
n | ≤ d(xm,xn), it follows that (x(k)

n )n≥1

is a Cauchy sequence, for k = 1, . . . , p
Conversely, assume (x(k)

n )n≥1 is a Cauchy sequence, for k = 1, . . . , p. Since

d(xm,xn) =
√

(x(1)
m − x

(1)
n )2 + · · ·+ (x(p)

m − x
(p)
n )2,

it follows that (xn) is Cauchy.

Theorem 11.5.3. A sequence in Rp is Cauchy iff it converges.

Proof. A sequence is Cauchy iff each of the component sequences is Cauchy
(Proposition 11.5.2) iff each of the component sequences converges (Theorem 5.1.2)
iff the sequence converges (Proposition 11.1.3).

11.6. Contraction Mapping Principle in Rp. The reference is Reed Sec-
tion 5.7, but with Rp and d instead ofM and ρ. In Section 15.5 of these notes we
will generalise this to any complete metric space with the same proof. But until
then, omit Reed Examples 1 and 3 and all except the first four lines on page 208.

Suppose S ⊆ Rp. We say F : S → S is a contraction if there exists λ ∈ [0, 1)
such that

d(F (x), F (y)) ≤ λd(x,y)

for all x,y ∈ S.

* A contraction map is continuous, and in fact uniformly continuous. More
generally, any Lipschitz map F is continuous, where Lipschitz means for some
λ ∈ [0,∞) and all x, y ∈ D(f),

d(F (x), F (y)) ≤ λd(x, y).

The definitions of continuity and uniform continuity are essentially the same as
in the one dimensional case, see Section 13.1.3. The proof that Lipschitz implies
uniform continuity is essentially the same as in the one dimensional case, see Propo-
sition 7.5.4.

A simple example of a contraction map on Rp is the map

F (x) = a + r(x− b),(17)

for 0 ≤ r < 1. In this case λ = r, as is easily checked. Since

a + r(x− b) =
(
b + r(x− b)

)
+ a− b,
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we see (17) is dilation about b by the factor r, followed by translation by the
vector a− b.

We say z is a fixed point of the map F : S → S if F (z) = z.

In the preceding example, the unique fixed point for any r 6= 1 (even r > 1) is
(a− rb)/(1− r), as is easily checked.

The following theorem (and its generalisations to closed subsets of a complete
metric spaces) is known as the Contraction Mapping Theorem, the Contraction
Mapping Principle or the Banach Fixed Point Theorem. It has many important
applications.

Theorem 11.6.1. Let F : S → S be a contraction map, where S ⊆ Rp is
closed. Then F has a unique fixed point x.39

Moreover, iterates of F applied to any initial point x0 converge to x, and

d(xn,x) ≤ λn

1− λ
d(x0, F (x0)).(18)

Proof. We will find the fixed point as the limit of a Cauchy sequence.
Let x0 be any point in S and define a sequence (xn)n≥0 by

x1 = F (x0), x2 = F (x1), x3 = F (x2), . . . , xn = F (xn−1), . . . .

Let λ be the contraction ratio.
1. Claim: (xn) is Cauchy.

We have

d(xn,xn+1) = d(F (xn−1), F (xn) ≤ λd(xn−1,xn).

By iterating this we get

d(xn,xn+1) ≤ λnd(x0,x1).

Thus if m > n then
d(xn,xm) ≤ d(xn,xn+1) + · · ·+ d(xm−1,xm)

≤ (λn + · · ·+ λm−1) d(x0,x1).
(19)

But

λn + · · ·+ λm−1 ≤ λn(1 + λ + λ2 + · · · )

=
λn

1− λ
→ 0 as n→∞.

It follows (why?) that (xn) is Cauchy.
Hence (xn) converges to some limit x ∈ Rp. Since S is closed it follows that

x ∈ S.

2. Claim: x is a fixed point of F .
We will show that d(x, F (x)) = 0 and so x = F (x). In fact

d(x, F (x)) ≤ d(x,xn) + d(xn, F (x))

= d(x,xn) + d(F (xn−1), F (x))

≤ d(x,xn) + λd(xn−1,x)
→ 0

as n→∞. This establishes the claim.

3. Claim: The fixed point is unique.

39In other words, F has exactly one fixed point.
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If x and y are fixed points, then F (x) = x and F (y) = y and so

d(x,y) = d(F (x), F (y)) ≤ λd(x,y).

Since 0 ≤ λ < 1 this implies d(x,y) = 0, i.e. x = y.

4. From (19) and the lines which follow it, we have

d(xn,xm) ≤ λn

1− λ
d(x0, F (x0)).

Since xm → x, (18) follows.

Remark 11.6.1. It is essential that there is a fixed λ < 1. For example, the
function F (x) = x2 is a contraction on [0, a] for each 0 ≤ a < 1

2 but is not a
contraction on [0, 1

2 ]. However, in this case there is still a fixed point in [0, 1
2 ],

namely 0.

To obtain an example where d (F (x), F (y)) < d (x, y) for all x, y ∈ S but there
is no fixed point, consider a function F with the properties

x < F (x), 0 ≤ F ′(x) < 1,

for all x ∈ [0,∞), see the following diagram. (Can you write down an analytic
expression?)

By the Mean Value Theorem, d(F (x), F (y)) < d(x, y) for all x, y ∈ R. But
since x < F (x) for all x, there is no fixed point.

Example 11.6.2. (Approximating
√

2) The map

F (x) =
1
2

(
x +

2
x

)

takes [1,∞) into itself and is a contraction with λ = 1
2 .

The first claim is clear from a graph, and can be then checked in various
standard ways.
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Since F ′(x) = 1
2 −

1
x2 , it follows for x ∈ [1,∞) that

−1
2
≤ F ′(x) <

1
2
.

Hence

|F (x1)− F (x2)| ≤
1
2
|x1 − x2|

by the Mean Value Theorem. This proves F is a contraction with λ = 1
2 .

The unique fixed point is
√

2. It follows that we can approximate
√

2 by
beginning from any x0 ∈ [1,∞) and iterating F . In particular, the following provide
approximations to

√
2 :

1,
3
2
,

17
12
≈ 1.417,

577
408
≈ 1.4142156.

(Whereas
√

2 = 1.41421356 . . . .) This was known to the Babylonians, nearly 4000
years ago.

Example 11.6.3 (Stable fixed points). See Reed, Theorem 5.7.2 on page 206
and the preceding paragraph.

Suppose F : S → S is continuously differentiable on some open interval S ⊆ R
and F (x∗) = x∗ (i.e. x∗ is a fixed point of F ). We say x∗ is a stable fixed point if
there is an ε > 0 such that Fn(x0)→ x∗ for every x0 ∈ [x∗ − ε, x∗ + ε].

If |F ′(x∗)| < 1 it follows from the Mean Value Theorem and the Contrac-
tion Mapping Principle that x∗ is a stable fixed point of F (Reed, Theorem 5.7.2
page 206).

Example 11.6.4 (The Quadratic Map). See Reed Example 4 on page 208.
In Section 6 we considered the quadratic map

F : [0, 1]→ [0, 1], F (x) = rx(1− x).

The only fixed points of F are x = 0 and x = x∗ := 1− 1/r. As noted in Section 6,
if 1 < r ≤ 3 it can be shown that, beginning from any x0 ∈ (0, 1), iterates of F
converge to x∗. The proof is quite long.

However, we can prove less, but much more easily.
Note that F ′(x) = r(1 − 2x) and so F ′(x∗) = 2 − r. If 1 < r < 3 then

|F ′(x∗)| < 1. Hence x∗ is a stable fixed point of F , and so iterates Fn(x0) converge
to x∗ provided x0 is sufficiently close to x∗.

Example 11.6.5. (Newton’s Method) (Recall Reed Theorem 4.4.1) Suppose
that f(x) = 0, f ′(x) 6= 0 and f ′′ exists and is bounded in some interval containing x.
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Then Newton’s Method is to iterate the function

F (x) = x− f(x)
f ′(x)

.

Here is a very short proof that the method works: Since

F ′(x) =
f(x)

(f ′(x))2
f ′′(x),

we see F ′(x) = 0. Hence x is a stable fixed point of F and so iterates Fn(x0)
converge to x for all x0 sufficiently close to x.

* We can even show quadratic convergence with a little extra work. The main
point is that the contraction ratio converges to 0 as x→ x.



12. COMPACT SUBSETS OF Rp 51

12. Compact subsets of Rp

In this section we see that a subset of Rp is closed and bounded iff it is sequen-
tially compact iff it is compact. We also see that a subset of an arbitrary metric
space is sequentially compact iff it is compact, that either implies the subset is
closed and bounded, but that (closed and bounded) need not imply compact (or
sequentially compact).

In the next section we will see that compact sets have nice properties with
respect to continuous functions (Theorems 13.2.1 and 13.5.1).

12.1. Sequentially compact sets.

Definition 12.1.1. A set A ⊆ Rp is sequentially compact if every (xn) ⊆ A
has a convergent subsequence with limit in A.

We saw in the Bolzano-Weierstraß Theorem 11.4.2 that a closed bounded subset
of Rp is sequentially compact. The converse is also true.

Theorem 12.1.2. A set A ⊆ Rp is closed and bounded iff it is sequentially
compact.

Proof. We only have one direction left to prove.

So suppose A is sequentially compact.
To show that A is closed in Rp, suppose (xn) ⊆ A and xn → x. We need to

show that x ∈ A.
By sequential compactness, some subsequence (xn′) converges to some x′ ∈ A.

But from Proposition 11.4.1 any subsequence of (xn) must converge to the same
limit as (xn). Hence x′ = x and so x ∈ A. Thus A is closed.

To show that A is bounded, assume otherwise. Then for each n we can choose
some an ∈ A with an 6∈ Bn(0), i.e. with d(an,0) > n. It follows that any sub-
sequence of (an) is unbounded. But this means no subsequence is convergent by
Proposition 11.3.4. This contradicts the fact A is compact, and so the assumption
is false, i.e. A is bounded.

Remark 12.1.1. The above result is true in an arbitrary metric space in only
one direction. Namely, sequentially compact implies closed and bounded and the
proof is essentially the same. The other direction requires the Heine Borel theorem,
which need not hold in an arbitrary metric space.

12.2. Compact sets. An open cover of a set A is a collection of open sets
Aλ (indexed by λ ∈ J , say) such that

A ⊆
⋃
λ∈J

Aλ.

We denote the collection of sets by {Aλ | λ ∈ J }.
A finite subcover of the given cover is a finite subcollection which still covers

A. That is, a finite subcover is a collection of sets {Aλ | λ ∈ J0 } for some finite
J0 ⊆ J , such that

A ⊆
⋃
λ∈J0

Aλ.

(Thus a finite subcover exists if one can keep just a finite number of sets from the
original collection and still cover A.)

The following is an example of a cover of A. This particular cover is already
finite.
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Example 12.2.1. An open cover of a set which has no finite subcover is

(0, 1) ⊆
⋃
n≥2

(
1
n

, 1
)

.

This is easy to see, why?

Another example is

(0, 1) ⊆
⋃
n≥2

(
1− 2

n
, 1− 1

n

)
.

We can also write the cover as(
0,

1
2

)
∪

(
1
3
,
2
3

)
∪

(
2
4
,
3
4

)
∪

(
3
5
,
4
5

)
∪

(
4
6
,
5
6

)
∪ . . .

The following is a rough sketch of the first four intervals in the cover, indicated
by lines with an arrow at each end.

The intervals overlap since 1− 1
n > 1− 2

n+1 if n ≥ 2 (because this inequality is
equivalent to the inequality 1

n < 2
n+1 , which in turn is equivalent to the inequality

n+1
n < 2, which in turn is equivalent to the inequality 1 + 1

n < 2, which is certainly
true.) The intervals cover (0, 1) because they overlap and because 1− 1

n → 1.
But it is clear that there is no finite subcover. (If n is the largest integer such

that
(
1− 2

n , 1− 1
n

)
is in some finite collection of such intervals, then no x between

1− 1
n and 1 is covered.)

Definition 12.2.2. A set A ⊆ Rp is compact if every open cover of A has a
finite subcover.

Note that we require a finite subcover of every open cover of A.

Example 12.2.3. Every finite set A is compact. (This is a simple case of the
general result that every closed bounded set is compact — see Remark ??.)

To see this, suppose A ⊆
⋃
λ∈J Aλ. For each a ∈ A choose one Aλ which

contains a. The collection of Aλ chosen in this way is a finite subcover of A.

We next prove that if a subset of Rp is compact, then it is closed and bounded.
The converse direction is true for subsets of Rp, but not for subsets of an arbitrary
metric space — we show all this later.

Theorem 12.2.4. If A ⊆ Rp is compact, then it is closed and bounded.
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Proof. Suppose A ⊆ Rp is compact.
For any set A ⊆ Rp,

A ⊆
⋃
n≥1

Bn(0),

since the union of all such balls is Rp. Since A is compact, there is a finite subcover.
If N is the radius of the largest ball in the subcover, then

A ⊆ BN (0).

Hence A is bounded.

If A is not closed then there exists a sequence (an) ⊆ A with an → b 6∈ A.
For each a ∈ A, let ra = 1

2d(a,b). Clearly,

A ⊆
⋃
a∈A

Bra(a).

By compactness there is a finite subcover:

A ⊆ Br1(a1) ∪ · · · ∪Brn(an),

say.
Let r be the minimum radius of any ball in the subcover (r > 0 as we are taking

the minimum of a finite set of positive numbers). Every point x ∈ A is in some
Bri(ai) (i = 1, . . . , n) and so within distance ri of ai. Since the distance from ai
to b is 2ri, the distance from x to b is at least ri and hence at least r. But this
contradicts the fact that there is a sequence from A which converges to b.

Hence A is closed.

12.3. Compact sets. We next prove that sequentially compact sets and com-
pact sets in Rp are the same. The proofs in both directions are starred. They both
generalise to subsets of arbitrary metric spaces.

It follows that the three notions of closed and bounded, of sequential compact-
ness, and of compactness, all agree in Rp. To prove this, without being concerned
about which arguments generalise to arbitrary metric spaces, it is sufficient to con-
sider Theorem 12.1.2 (closed and bounded implies sequentially compact), Theorem
12.2.4 (compact implies closed and bounded), and the following Theorem 12.3.1
just in one direction (sequentially compact implies compact).

Theorem 12.3.1. A set A ⊆ Rp is sequentially compact iff it is compact.

Proof*. First suppose A is sequentially compact. Suppose

A ⊆
⋃
λ∈J

Aλ,

where {Aλ | λ ∈ J } is an open cover.

We first claim there is a subcover which is either countable or finite. (This is
true for any set A, not necessarily closed or bounded.)

To see this, consider each point x = (x1, . . . , xp) ∈ A all of whose coordinates
are rational, and consider each rational r > 0. For such an x and r, if the ball
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Br(x) ⊆ Aλ for some λ ∈ J , choose one such Aλ. Let the collection of Aλ chosen
in this manner be indexed by λ ∈ J ′, say.

Thus the set J ′ corresponds to a subset of the set
1

Q × · · ·×
p

Q ×Q, which is
countable by Reed Proposition 1.3.4 applied repeatedly (products of countable sets
are countable). Since a subset of a countable set is either finite or countable (Reed
page 16 Proposition 1.3.2), it follows that J ′ is either finite or countable.

We next show that the collection of sets {Aλ | λ ∈ J ′ } is a cover of A.
To see this consider any x∗ ∈ A. Then x∗ ∈ Aλ∗ for some λ∗ ∈ J , and so

Br∗(x∗) ⊆ A∗λ for some real number r∗ > 0 since Aλ∗ is open.

It is clear from the diagram that we can choose x with rational components
close to x∗, and then choose a suitable rational r > 0, such that

x∗ ∈ Br(x) and Br(x) ⊆ Br∗(x∗).

(The precise argument uses the triangle inequality.40) In particular, Br(x) ⊆ Aλ∗

and so Br(x) must be one of the balls used in constructing J ′. In other words,
Br(x) ⊆ Aλ for some λ ∈ J ′.

The collection of all Br(x) obtained in this manner must be a cover of A
(because every x∗ ∈ A is in at least one such Br(x) ). It follows that the collection
{Aλ | λ ∈ J ′ } is also a cover of A.

But we have seen that the set {Aλ | λ ∈ J ′ } is finite or countable, and so we
have proved the claim.

We next claim that there is a finite subcover of any countable cover.
To see this, write the countable cover as

A ⊆ A1 ∪A2 ∪A3 ∪ . . . .(20)

If there is no finite subcover, then we can choose

a1 ∈ A \A1

a2 ∈ A \ (A1 ∪A2)

a3 ∈ A \ (A1 ∪A2 ∪A3)
...

By sequential compactness of A there is a subsequence (an′) which converges
to some a ∈ A. From (20), a ∈ Ak for some k. Because Ak is open, an′ ∈ Ak for
all sufficiently large n′. But from the construction of the sequence (an) an 6∈ Ak if
n ≥ k. This is a contradiction.

Hence there is a finite subcover in (20), and so we have proved the claim.

40For example, choose x with rational components so d(x,x∗) < r∗/4 and then choose
rational r so r∗/4 < r < r∗/2.

Then x∗ ∈ Br(x) since d(x,x∗) < r∗/4 < r.
Moreover, if y ∈ Br(x) then

d(x∗,y) < d(x∗,x) + d(x,y) < r∗/4 + r < r∗/4 + r∗/2 < r∗.

Hence y ∈ Br∗ (x∗) and so Br(x) ⊆ Br∗ (x∗).
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Putting the two claims together, we see that there is a finite subcover of any
cover of A, and so A is compact.

This proves one direction in the theorem.

To prove the other direction, suppose A is compact.
Assume A is not sequentially compact.
This means we can choose a sequence (an) ⊆ A that has no subsequence con-

verging to any point in A. We saw in the previous theorem that A is closed. This
then implies that in fact (an) has no subsequence converging to any point in R.
Let the set of values taken by (an) be denoted

S = {a1,a2,a3, . . . }.
(Some values may be listed more than once.)

Claim: S is infinite. To see this, suppose S is finite. Then at least one value a
would be taken an infinite number of times. There is then a constant subsequence
all of whose terms equal a and which in particular converges to a. This contradicts
the above and so establishes the claim.

Claim: S is closed in Rp. If S is not closed then from Theorem 11.2.1 there
is a sequence (bn) from S which converges to b 6∈ S. Choose a subsequence (bn′)
of (bn) so that b1′ = b1, so that b2′ occurs further along in the sequence (an)
than does b1′ , so that b3′ occurs further along in the sequence (an) than does b2′ ,
etc. Then the sequence (bn′) is a subsequence of (an), and it converges to b. This
contradicts what we said before about (an). Hence S is closed in Rp as claimed.

A similar argument shows that for each a ∈ S there is a neighbourhood U(a) =
Br(a) (for some r depending on a) such that the only point in S ∩ U(a) is a.
(Otherwise we could construct in a similar manner to the previous paragraph a
subsequence of (an) which converges to a.)

Next consider the following open cover of A (in fact of all of Rp):
Sc, U(a1), U(a2), U(a3), . . . .

By compactness there is a finite subcover of A, and by adding more sets if necessary
we can take a finite subcover of the form

Sc, U(a1), . . . , U(aN )

for some N .
But this is impossible, as we see by choosing a ∈ S (⊆ A) with a 6= a1, . . . ,aN

(remember that S is infinite) and recalling that S ∩ U(ai) = {ai}. In particular,
a 6∈ Sc and a 6∈ U(ai) for i = 1, . . . , N .

Thus the assumption is false and so we have proved the theorem,

12.4. More remarks. We have seen that A ⊆ Rp is closed and bounded iff
it is sequentially compact iff it is compact.

Remark 12.4.1.* In an arbitrary metric space the second “iff” is still true,
with a “similar” argument to that of Theorem 12.3.1. The notion of points with
rational coordinates is replaced by the notion of a “countable dense subset” of A.

In an arbitrary metric space sequentially compact implies closed and bounded
(with essentially the same proof as in Theorem 12.1.2), but closed and bounded
does not imply sequentially compact (the proof of Theorem 11.4.2 uses components
and does not generalise to arbitrary metric spaces). The general result is that
complete and totally bounded (these are the same as closed and bounded in Rp) is
equivalent to sequentially compact is equivalent to compact.
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13. Continuous functions on Rp

Review Section 7 and Reed page 152 line 3- the end of paragraph 2 on page 154.

We consider functions f : A→ R, where A ⊆ Rp.
(Much of what we say will generalise to f : A → R where A ⊆ X and (X, ρ)

is a general metric space. It also mostly further generalises to replacing R by Y
where (Y, ρ∗) is another metric space.)

13.1. Basic results. Exactly as for p = 1, we have:

Definition 13.1.1. A function f : A→ R is continuous at a ∈ A if

xn → a =⇒ f(xn)→ f(a)(21)

whenever (xn) ⊆ A.

Theorem 13.1.2. A function f : A → R is continuous at a ∈ A iff for every
ε > 0 there is a δ > 0 such that:

x ∈ A and d(x,a) ≤ δ =⇒ d(f(x), f(a)) ≤ ε.(22)

(The proof is the same as the one dimensional case, see Reed Theorem 3.1.3
page 77.)

The usual properties of sums, products, quotients (when defined) and com-
positions of continuous functions being continuous, still hold and have the same
proofs.

Definition 13.1.3. A function f : A→ R is uniformly continuous iff for every
ε > 0 there is a δ > 0 such that:

x ∈ A and d(x1,x2) ≤ δ =⇒ d(f(x), f(a)) ≤ ε.(23)

This is also completely analogous to the case p = 1.

Remark 13.1.1. In the previous Theorem and Definition we can replace either
or both “≤” by “<”. This follows essentially from the fact that we require the
statements to be true for every ε > 0. This is frequently very convenient and we
will usually do so without further comment. See also Adams §1.5, Definition 1.9.

Remark 13.1.2. We can think of (22) geometrically as saying either (using <
instead of ≤)

1. f [A ∩Bδ(a)] ⊆ (f(a)− ε, f(a) + ε), or
2. A ∩Bδ(a) ⊆ f−1[ (f(a)− ε, f(a) + ε) ].

See Section 13.4 for the notation, although the following diagram in case A = Rp
should make the idea clear.
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Remark 13.1.3. Definitions 13.1.1, 13.1.3 and Theorem 13.1.2 generalise im-
mediately, without even changing notation, to functions f : A→ Rq. We can again
replace either or both “≤” by “<”.

The previous diagram then becomes:

A function f which has “rips” or “tears” are not continuous.

If f : A→ Rq we can write

f(x) = (f1(x), . . . , fq(x)).

It follows from Definition 13.1.1 (or Theorem 13.1.2) applied to functions with val-
ues in Rq, that f is continuous iff each component function f1, . . . , fq is continuous.

For example, if

f : R2 → R3, f(x, y) = (x2 + y2, sinxy, ex),

then f is continuous since the component functions

f1(x, y) = x2 + y2, f2(x, y) = sinxy, f3(x, y) = ex,

are all continuous.
In this sense we can always consider real valued functions instead of functions

into Rq. But this is often not very useful — in linear algebra, for example, we
usually want to think of linear transformations as maps into Rq rather than as q
component maps into R. And it does not help if we want to consider functions
which map into a general metric space.

13.2. Deeper properties of continuous functions.

Theorem 13.2.1. Suppose f : A → R is continuous where A ⊆ Rp is closed
and bounded. Then f is bounded above and below and has a maximum and a
minimum value. Moreover, f is uniformly continuous of A.

This generalises the result for functions defined on a closed bounded interval.
The proof is essentially the same as in the case p = 1. See Reed Theorem 4.6.1
page 153.

The theorem is also true for A ⊆ X where X is an arbitrary metric space,
provided A is sequentially compact (which is the same as compact, as we have
proved). The proof is essentially the same as in the case of X = R in Section 3.2 of
Reed. The Bolzano-Wierstrass theorem is not needed since we know immediately
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from the definition of sequential compactness that every sequence from A has a
convergent subsequence.

* There is also a generalisation of the Intermediate Value Theorem, but for
this we need the set A to be “connected”. One definition of connected is that we
cannot write

A = (E ∩A) ∪ (F ∩A)

where E, F are open and E ∩ A, F ∩ A are nonempty. If f is continuous and A is
connected, then one can prove that the image of f is an interval.

13.3. Limits. As for the case p = 1, limits in general can be defined either in
terms of sequences or in terms of ε and δ. See Definition 13.3.1 and Theorem 13.3.2.

We say a is a limit point of A if there is a sequence from A\{a} which converges
to a. We do not require a ∈ A. From Theorem 11.2.1, a set contains all its limit
points iff it is closed.

We say a ∈ A is an isolated point of A if there is no sequence xn → a such that
(xn) ⊆ A \ {a}.

For example, if A = (0, 1] ∪ 2 ⊆ R then 2 is an isolated point of A (and is the
only isolated point of A). The limit points of A are given by the set [0, 1].

The following Definition, Theorem and its proof, are completely analogous to
the case p = 1.

Definition 13.3.1. Suppose f : A → R, where A ⊆ Rp and a is a limit point
of A. If for any sequence (xn):

(xn) ⊆ A \ {a} and xn → a ⇒ f(xn)→ L,

then we say the limit of f(x) as x approaches a is L, or the limit of f at a is L,
and write

lim
x→a
x∈A

f(x) = L, or lim
x→a

f(x) = L.

The reason for restricting to sequences, none of whose terms equal a, is the
usual one. For example, if

f : R→ R, f(x) =

{
x2 x 6= 0
1 x = 0

or

g : R \ {0} → R, g(x) = x2,

then we want

lim
x→0

f(x) = 0, lim
x→0

g(x) = 0.

Theorem 13.3.2. Suppose f : A→ R, where A ⊆ Rp and a is a limit point of
A. Then limx→a f(x) = L iff 41:

for every ε > 0 there is a corresponding δ > 0 such that

d(x,a) ≤ δ and x 6= a ⇒ |f(x)− L| ≤ ε.

It follows, exactly as in the case p 6= 1, that if a ∈ D(f) is a limit point of
D(f)) then f is continuous at a iff

lim
x→a

f(x) = f(a).

(If a is an isolated point of D(f) then f is always continuous at a according
to the definition — although limx→a f(x) is not actually defined. This is not an

41As usual, we could replace either or both “≤ ” by “< ”
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interesting sitation, and we would not normally consider continuity at isolated
points.)

The usual properties of sums, products and quotients of limits hold, with the
same proofs as in the case p = 1.

Example 13.3.3. Functions of two or more variables exhibit more complicated
behaviour than functions of one variable. For example, let

f(x, y) =
xy

x2 + y2

for (x, y) 6= (0, 0). (Setting x = r cos θ, y = r sin θ, we see that in polar coordinates
this is just the function f(r, θ) = 1

2 sin 2θ.)
If y = ax then f(x, y) = a(1 + a2)−1 for x 6= 0. Hence

lim
(x,y)→a
y=ax

f(x, y) =
a

1 + a2
.

Thus we obtain a different limit of f as (x, y) → (0, 0) along different lines. It
follows that

lim
(x,y)→(0,0)

f(x, y)

does not exist.
A partial diagram of the graph of f is:

Probably a better way to visualize f is by sketching level sets42 of f as shown
in the next diagram. Then you can visualise the graph of f as being swept out by
a straight line rotating around the origin at a height as indicated by the level sets.
This may also help in understanding the previous diagram.

42A level set of f is a set on which f is constant.
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Example 13.3.4. Let

f(x, y) =
x2y

x4 + y2

for (x, y) 6= (0, 0).
Then

lim
(x,y)→(0,0)

y=ax

f(x, y) = lim
x→0

ax3

x4 + a2x2

= lim
x→0

ax

x2 + a2

= 0.

Thus the limit of f as (x, y) → (0, 0) along any line y = ax is 0. The limit along
the y-axis x = 0 is also easily seen to be 0.

But it is still not true that lim(x,y)→(0,0) f(x, y) exists. For if we consider the
limit of f as (x, y)→ (0, 0) along the parabola y = bx2 we see that f = b(1 + b2)−1

on this curve and so the limit is b(1 + b2)−1.
You might like to draw level curves (corresponding to parabolas y = bx2).
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13.4. Another characterisation of continuity. One can define continuity
in terms of open sets (or closed sets) without using either sequences or the ε–δ
definition. See Theorem 13.4.3.

But for this we first need to introduce some general notation for functions.

Definition 13.4.1. Suppose f : X → Y . The image of E ⊆ X under f is the
set

f [E] = { y ∈ Y | y = f(x) for some x ∈ E }.
The inverse image of E ⊆ Y under f is the set

f−1[E] = {x ∈ X | f(x) ∈ E }.

It is important to realise that f−1[E] is always defined for E ⊆ Y , even if f
does not have an inverse. In fact the inverse function will exist iff f−1{y}43 contains
at most one element for each y ∈ Y .

The following are straightforward to check. Note that inverse images are bet-
ter behaved than images. The results generalise immediately to intersections and
unions of more than two, including infinitely many, sets.

Theorem 13.4.2. Suppose f : X → Y and E, E1, E2 ⊆ Y . Then

f−1[E1 ∩ E2] = f−1[E1] ∩ f−1[E2],

f−1[E1 ∪ E2] = f−1[E1] ∪ f−1[E2],

f−1[E1 \ E2] = f−1[E1] \ f−1[E2],

E1 ⊆ E2 ⇒ f−1[E1] ⊆ f−1[E2]

f [f−1[E] ] ⊆ E.

If E, E1, E2 ⊆ X, then

f [E1 ∩ E2] ⊆ f [E1] ∩ f [E2],

f [E1 ∪ E2] = f [E1] ∪ f [E2],

f [E1 \ E2] ⊇ f [E1] \ f [E2]

E1 ⊆ E2 ⇒ f [E1] ⊆ f [E2]

E ⊆ f−1[f [E] ].

Proof. For the first, x ∈ f−1[E1 ∩ E2] iff f(x) ∈ E1 ∩ E2 iff (f(x) ∈ E1 and
f(x) ∈ E2) iff (x ∈ f−1[E1] and x ∈ f−1[E2]) iff x ∈ f−1[E1]∩f−1[E2]. The others
are similar.

To see that equality need not hold in the sixth assertion let f(x) = x2, X =
Y = R, E2 = (−∞, 0] and E1 = [0,∞). Then f [E1 ∩ E2] = {0} and f [E1] ∩
f [E2] = [0,∞). Similarly, f [E1 \ E2] = (0,∞) while f [E1] \ f [E2] = ∅. Also,
f−1[f [E1]] = R % E1 and f [f−1[R]] = [0,∞) 6= R.

You should now go back and look again at Remarks 13.1.2 and 13.1.3 and the
two diagrams there.

We first state and prove the following theorem for functions defined on all of
Rp. We then discuss the generalisation to f : A (⊆ Rp)→ B (⊆ R).

Theorem 13.4.3. Let f : Rp → R. Then the following are equivalent:
1. f is continuous;
2. f−1[E] is open in Rp whenever E is open in R;
3. f−1[C] is closed in Rp whenever C is closed in R.

43We sometimes write f−1E for f−1[E].
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Proof.

(1)⇒ (2): Assume (1). Let E be open in R. We wish to show that f−1[E] is
open (in Rp).

Let x ∈ f−1[E]. Then f(x) ∈ E, and since E is open there exists r > 0 such
that (f(x)− r, f(x) + r) ⊆ E.

From Remark 13.1.2 there exists δ > 0 such that

Bδ(x) ⊆ f−1(f(x)− r, f(x) + r).

But

f−1(f(x)− r, f(x) + r) ⊆ f−1[E],

and so

Bδ(x) ⊆ f−1[E].

Thus for every point x ∈ f−1[E] there is a δ = δx > 0 such that the above line is
true, and so f−1[E] is open.

(2)⇔ (3): Assume (2), i.e. f−1[E] is open in Rp whenever E is open in R. If
C is closed in R then Cc is open and so f−1[Cc] is open. But (f−1[C])c = f−1[Cc].
Hence f−1[C] is closed.

We can similarly show (3)⇒ (2).

(2)⇒ (1): Assume (2).
Let x ∈ Rp. In order to prove f is continuous at x take any r > 0.
Since (f(x)− r, f(x)+ r) is open it follows that f−1(f(x)− r, f(x)+ r) is open.
Since x ∈ f−1(f(x) − r, f(x) + r) and this set is open, it follows there exists

δ > 0 such that Bδ(x) ⊆ f−1(f(x)− r, f(x) + r).
It now follows from Remark 13.1.2 that f is continuous at x.
Since x was an arbitrary point in Rp, this finishes the proof.

Example 13.4.4. We can now give a simple proof that the examples at the
beginning of Section 10.5 are indeed open. For example, if

A = { (x, y, z) ∈ R3 | x2 + y2 < z2 and sinx < cos y }
then A = A1 ∩A2 where

A1 = f−1
1 (−∞, 0), f1(x, y, z) = x2 + y2 − z2,

A2 = f−1
2 (−∞, 0), f2(x, y, z) = sinx− cos y.



E

A

F

    E does not include its boundary, A does.
F is relatively open in A, but is not open in R2 .
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Thus A1 and A2 are open, being the inverse image of open sets, and hence their
intersection is open.

Remark 13.4.1.* In order to extend the previous characterisation of conti-
nuity to functions defined just on a subset of Rp, we need the following definitions
(which are also important in other settings).

Suppose A ⊆ Rp. We say F ⊆ A is open (closed) in A or relatively open
(closed) in A if there is an open (closed) set E in Rp such that

F = A ∩ E.

It follows (exercise) that F ⊆ A is open in A iff for each x ∈ F there is an
r > 0 such that

A ∩Br(x) ⊆ F.

Example 13.4.5. Consider the interval A = (0, 1]. Then the set F = (1
2 , 1] is

open in A, as is A itself. The set F = (0, 1
2 ] is closed in A, as is A itself. (What

could we take as the set E in each case? )

For another example, consider the square

F = { (x, y) | 0 ≤ x ≤ 1, 0 < y < 1 },
which does not contain its vertical sides but does contain the remainder of its
horizontal sides. Let

A = { (x, y) | 0 ≤ x ≤ 1 }, B = { (x, y) | 0 < y < 1 },
Then A is closed and B is open. Since F = A ∩ B it follows that F is open in A
and closed in B.

The interval (0, 1) is open in R . But it is not open when considered as a subset
of R2 via the usual inclusion of R into R2 .

Theorem 13.4.3 is true for functions f : A (⊆ Rp)→ R if we replace “in Rp by
“in A”.

For (1) ⇒ (2) we suppose E is open. We need to show that f−1[E] is open
in A. Just replace Bδ(x) by Bδ(x) ∩ A and Bδx(x) by Bδx(x) ∩ A throughout the
proof.

The proof of (2)⇔ (3) is similar, by taking complements in A and noting that
a set is open in A iff its complement in A is closed in A. (Why? )

For (2) ⇒ (1) we suppose the inverse image of an open set in R is open in A.
In the proof, replace Bδ(x) by A∩Bδ(x) (and use the exercise at the beginning of
this Remark).

Finally, we observe that the theorem also generalises easily to functions f :
A (⊆ Rp)Rq. Just replace the interval (f(x) − r, f(x) + r) by the ball Br(f(x))
throughout this Remark.
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Remark 13.4.2. It is not true that the continuous image of an open (closed)
set need be open (closed).

For example, let f : R → R be given by f(x) = x2. Then f(−1, 1) = [0, 1)
which is neither open nor closed.

If f(x) = e−x
2

then f [R] = (0, 1] which again is neither open nor closed.

13.5. Continuous image of compact sets*. The inverse image of a com-
pact set under a continuous function need not be compact.

For example, if f : R→ R is given by f(x) = e−x
2

then f−1[0, 1] = R.
However, continuous images of compact sets are compact.

Theorem 13.5.1. Suppose f : E (⊆ Rp)→ Rq is continuous and E is compact.
Then f [E] is compact.

Proof. Suppose

f [E] ⊆
⋃
λ∈J

Aλ

is an open cover. Then

E ⊆ f−1[f [E] ] ⊆ f−1
[ ⋃
λ∈J

Aλ

]
=

⋃
λ∈J

f−1[Aλ].

This gives a cover of E by relatively open sets, and by compactness44 there is a
finite subcover

E ⊆
⋃
λ∈J0

f−1[Aλ].

It follows from Theorem 13.4.2 that

f [E] ⊆ f

[ ⋃
λ∈J0

f−1[Aλ]
]

=
⋃
λ∈J0

f [f−1[Aλ] ] ⊆
⋃
λ∈J0

Aλ.

Thus the original cover of f [E] has a finite subcover.
Hence f [E] is compact.

It is not always true that if f is continuous and one-to-one then its inverse is
continuous. For example, let

f : [0, 2π)→ { (x, y) | x2 + y2 = 1 } (⊆ R2), f(t) = (cos t, sin t).

Then the inverse function is given by

f−1 : { (x, y) | x2 + y2 = 1 } → [0, 2π), f(cos t, sin t) = t.

But this is not continuous, as we see by considering what happens near (1, 0).
For example, (

cos 2π − 1
n

, sin 2π − 1
n

)
→ (1, 0),

44Each Aλ can be extended to an open set in Rp. By compactness there is a finite subcover
from these extended sets. Taking their restriction to E gives a finite subcover of the original cover.
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but

f−1

(
cos 2π − 1

n
, sin 2π − 1

n

)
= 2π − 1

n
6→ f−1(1, 0) = 0.

However,

Theorem 13.5.2. Suppose f : E → Rq is one-to-one and continuous, and E is
compact. Then the inverse function f−1 is also continuous (on its domain f [E]).

Proof. Since f is one-to-one and onto its image, then its inverse function
f−1 : f [E]→ E is certainly well-defined (namely, f−1(y) = x iff f(x) = y).

To show that f−1 is continuous we need to show that the inverse image under
f−1, of any set C ⊆ E which is closed in E, is closed in f [E]. Since f is one-to-one
and onto, this inverse image (f−1)−1[C] under f−1 is the same as the image f [C]
under f .

Since C is a relatively closed subset of a compact set, it is itself compact. (C is
the intersection of the closed bounded set E with a closed set, and so is itself closed
and bounded, hence compact.)45 Hence f [C] is compact by the previous theorem,
and in particular is closed in Rq. It follows that f [C] is closed in f [E].

45On can also prove this directly from the definition of sequential compactness or from the
definition of compactness via open covers. Thus this result generalises to any metric space or even
any topological space.



14. SEQUENCES AND SERIES OF FUNCTIONS. 66

14. Sequences and series of functions.

The reference for this Chapter is Reed Chapter 5, §1–3, and Example 2 page
197; and Chapter 6, §6.3

14.1. Pointwise and uniform convergence. Study Reed §5.1 carefully; the
definitions and all the examples.

14.2. Properties of uniform convergence. Study Reed §5.2 carefully.
The point is that continuity and integration behave well under uniform conver-

gence, but not under pointwise convergence.
Differentiation does not behave well, unless we also require the derivatives to

converge uniformly.
Theorem 5.2.4, concerning differentiation under the integral sign, is also im-

portant.

14.3. The supremum norm and supremum metric. Study Reed §5.3 and
Example 2 page 197 carefully.

One way of measuring the “size” of a bounded function f is by means of the
supremum norm ‖f‖∞ (Reed page 175). We can then measure the distance between
two functions f and g (with the same domain E) by using the sup distance (or sup
metric)

ρ∞(f, g) = ‖f − g‖∞ = sup
x∈E
|f(x)− g(x)|.

In Reed, E ⊆ R, but exactly the same definition applies for E ⊆ Rn.

In Proposition 5.3.1 it is shown that the sup norm satisfies positivity, the tri-
angle inequality, and is well behaved under scalar multiples.

In Example 2 on page 197 it is shown that as a consequence the sup metric is
indeed a metric (i.e. satisfies positivity, symmetry and transitivity — see the first
paragraph in Section 10.2).
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(See Reed page 177) A sequence of functions (fn) defined on the same domain
E converges to f in the sup metric46 if ρ∞(fn, f)→ 0 as n →∞. (Note that this
is completely analogous to Definition 11.1.1 for convergence of a sequence of points
in Rn.)

One similarly defines the notion of Cauchy in the sup metric (or equivalently
Cauchy in the sup norm).

One proves (page 178) that if a sequence (fn) of continuous functions defined
on a closed bounded interval [a, b] is Cauchy in the sup metric, then it converges in
the sup metric and the limit is also continuous on [a, b]. (This is analogous to the
fact that if a sequence from Rn is Cauchy then it converges to a point in Rn.)

The same theorem and proof works if [a, b] is replaced by any set E ⊆ Rn, but
then we need to restrict to functions that are continuous and bounded (otherwise
the definition of ρ∞(f, g) may give ∞). (If E is compact we need not assume
boundedness, as this follows from continuity by Theorem 13.2.1.)

We say that the set of bounded and continuous functions defined on E is com-
plete in the sup metric (or norm).

14.4. Integral norms and metrics. Study Reed pp 179–181, particularly
Example 1. We cannot do much on this topic, other than introduce it.

The important “integral” norms for functions f with domain E are defined by

‖f‖p =
(∫

E

|f |p
)1/p

.

for any 1 ≤ p <∞.
The most important are p = 2 and p = 1 (in that order). If E is not an interval

in R then we need a more general notion of integration; to do it properly requires
the Lebesgue integral. But

∫
E

g is still interpreted as the area between the graph
of f and the set E ⊆ R — being negative where it lies below the axis. In higher
dimensional cases we replace “area” by “volume” of the appropriate dimension.)

It is possible to prove for ‖f‖p the three properties of a “norm” in Proposition
5.3.1 of Reed.

Actually, ‖f‖p does not quite give a norm. The problem is that if f is not
continuous then ‖f‖p may equal 0 even though f is not the zero function, i.e. not
everywhere zero. However f must then be zero “almost everywhere” — in a sense
that can be made precise. This problem does not arise if we restrict to continuous
functions, since if f is continuous and

∫ b
a
|f | = 0 then f = 0 everywhere. But it is

usually not desirable to restrict to continuous functions for other reasons.

The metrics corresponding to these norms are

ρp(f, g) = ‖f − p‖p,

again for 1 ≤ p <∞.

Remark 14.4.1. * The set S of continuous functions defined on a closed bounded
set is a metric space in any of the metrics ρp, but it is not a complete metric space
(unless p =∞). If we take the “completion” of the set S we are lead to the so-called
Lebesgue measurable functions and the theory of Lebesgue integration.

46Reed says “converges in the sup norm”.
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14.5. Series of functions. Study Reed §4.3 carefully.
Suppose the functions fj all have a common domain (typically [a, b]).
The infinite series of functions

∑∞
j=1 fj is said to converge pointwise to the

function f iff the corresponding series of real numbers
∑∞
j=1 fj(x) converges to

f(x) for each x in the (common) domain of the fj .
From the definition of convergence of a series of real numbers, this means that

the infinite sequence (Sn) of partial sums

Sn = f1 + · · ·+ fn

converges in the pointwise sense to f .

We say that the series
∑
j f converges uniformly if the sequence of partial sums

converges uniformly.

Note the important Weierstrass M-test, Theorem 6.3.1 of Reed. This gives a
very useful criterion for uniform convergence of a series of functions.

The results about uniform convergence of a sequence of functions in Section14.2
(Reed §5.2) immediately give corresponding results for series (Reed Theorem 6.3.1
— last sentence; Theorem 6.3.2, Theorem 6.3.3). In particular:

• A uniformly convergent series of continuous functions has a continuous limit.
• Integration behaves well in the sense that for a uniformly convergent series

of continuous functions on a closed bounded interval, the integral of the
sum is the sum of the integrals (i.e. summation and integration can be
interchanged).
• If a series of C1 functions converges uniformly on an interval to a function

f , and if the derivatives also converge uniformly to g say, then f is C1 and
f ′ = g (i.e. summation and differentiation can be interchanged).

Study example 1 on page 240 of Reed. Example 2 is * material (it gives an
example of a continuous and nowhere differentiable function).
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15. Metric spaces

Study Reed §5.6.

The best way to study convergence and continuity is to do it abstractly by
means of metric spaces. This has the advantage of simplicity and generality.

15.1. Definition and examples. The reference is Reed §5.6 up to the end
of the first paragraph on page 201.

The basic idea we need is the notion of a “distance function” or a “metric”.

Definition 15.1.1. A metric space is a set M together with a function ρ :
M×M→ [0,∞) (called a metric) which satisfies for all x, y, z ∈M

1. ρ(x, y) ≥ 0 and ρ(x, y) = 0 iff x = y, (positivity)
2. ρ(x, y) = ρ(y, x), (symmetry)
3. ρ(x, y) ≤ ρ(x, z) + ρ(z, y), (triangle inequality)

The idea is that ρ(x, y) measures the “distance (or length of a shortest route)
from x to y”. The three requirements are natural. In particular, the third might
be thought of as saying that one route from x to y is to take a shortest route from
x to z and then a shortest route from z to y — but there may be an even shorter
route from x to y which does not go via z.

Example 15.1.2 (Metrics on Rn). We discussed the Euclidean metric on Rn
in Sections 10.1 and 10.2

Example 3 on page 197 of Reed is important. It can be generalised to give the
following metrics on Rn:

ρp(x,y) = ((x1 − y1)p + . . . (xn − yn)p)
1/p =

(
n∑
i=1

(xi − yi)p
)1/p

,

ρmax(x,y) = max{ |xi − yi| : i− 1, . . . , n },

for x,y ∈ Rn, 1 ≤ p <∞.
We sometimes write ρ∞ for ρmax.
Note the diagrams in Reed showing {x ∈ R2|ρp(x,0) ≤ 1 } for p = 1, 2,∞.
The proof that ρp is a metric has already been given for p = 2 (the Euclidean

metric). The cases p = 1,∞ are Problem 1 page 202 of Reed in case n = 2, but the
proofs trivially generalise to n > 2. The case of arbitrary p is trickier, and I will
set it later as an assignment problem (with hints!).

Example 15.1.3 (Metrics on function spaces). These are extremely important.
See also Section 14.3.

The basic example is the sup metric ρ∞ on C[a, b], the set of continuous func-
tions f : [a, b]→ R. See Reed Example 2 page 197.

More generally, one has the sup metric on

1. B(E), the set of bounded functions f : E (⊆ Rn)→ R,
2. BC(E), the set of bounded continuous functions f : E (⊆ Rn)→ R.

In the second case, if E is compact, we need only require continuity as this already
implies boundedness.

The metrics ρp (1 ≤ p < ∞) on C[a, b] (and generalisations to other sets than
[a, b]) have also been discussed, see Section 14.4.

* If we regard (a1, . . . , an) as a function

a : {1, . . . , n} → R,
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and interpret ∫
|a|p as

n∑
i=1

|a(i)|p,

(which is indeed the case for an appropriate “measure”), then the metrics ρp (1 ≤
p <∞) on function spaces give the metrics ρp on Rn as a special case.

Example 15.1.4 (Subsets of a metric space). Any subset of a metric space is
itself a metric space with the same metric, see the first paragraph of Reed page 199.

See also the first example in Example 4 of Reed, page 199.

Example 15.1.5 (The discrete metric). A simple metric on any setM is given
by

d(x, y) =

{
1 x 6= y,

0 x = y.

Check that this is a metric. It is usually called the discrete metric. (It is a particular
case of what Reed calls a “discrete metric” in Problem 10 page 202.) It is not very
useful, other than as a source of counterexamples to possible conjectures.

Example 15.1.6 (Metrics on strings of symbols and DNA sequences). Example
5 in Reed is a discussion about metrics as used to estimate the difference between
two DNA molecules. This is important in studying evolutionary trees.

Example 15.1.7 (The natural metric on a normed vector space). Any normed
vector space gives rise to a metric space defined by

ρ(x, y) = ‖x− y‖.
The three properties of a metric follow from the properties of a norm. Examples
are the metrics ρp for 1 ≤ p ≤ ∞ on both Rn and the metrics ρp for 1 ≤ p ≤ ∞ on
spaces of functions.

But metric spaces are much more general. In particular, the discrete metric,
and Examples 4 and 5 on pages 199, 200 of Reed are not metrics which arise from
norms.

15.2. Convergence in a metric space. Reed page 201 paragraphs 2–4.

Once one has a metric, the following is the natural notion of convergence.

Definition 15.2.1. A sequence (xn) in a metric space (M, ρ) converges to
x ∈M if ρ(xn, x)→ 0 as n→∞.

Notice that convergence in a metric space is reduced to the notion of conver-
gence of a sequence of real numbers.

In the same way as for sequences in R, there can be at most one limit.

We discussed convergence in Rn in Section 11.1. This corresponds to conver-
gence with respect to the Euclidean metric. We will see in the next section that
convergence with respect to any of the metrics ρp on Rn is the same.

Convergence of a sequence of functions in the sup norm is the same as con-
vergence in the sup metric. But convergence in the other metrics ρp is not the
same.

For example, let

fn(x) =


0 −1 ≤ x ≤ 0
nx 0 ≤ x ≤ 1

n

1 1
n ≤ x ≤ 1

, f(x) =

{
0 −1 ≤ x ≤ 0
1 0 < x ≤ 1

.
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Then ρ∞(fn, f) = 1 and ρ1(fn, f) = 1
2n (why? ). Hence fn → f in (R[−1, 1], ρ1)

(the space of Riemann integrable functions on [−1, 1] with the ρ1 metric). But
fn 6→ f in (R[−1, 1], ρ∞)47.

15.3. Uniformly equivalent metrics. The reference here is the Definition
and Theorem on Reed page 201, and Problem 11 page 203. However, we will only
consider uniformly equivalent metrics, rather than equivalent metrics.

Definition 15.3.1. Two metrics ρ and σ on the same set M are uniformly
equivalent48 if there are positive numbers c1 and c2 such that

c1ρ(x, y) ≤ σ(x, y) ≤ c2ρ(x, y)

for all x, y ∈M.

It follows that

c−1
2 σ(x, y) ≤ ρ(x, y) ≤ c−1

1 σ(x, y).

Reed also defines a weaker notion of “equivalent” (“uniformly equivalent” im-
plies “equivalent” but not conversely). We will just need the notion of equivalent.
The following theorem has a slightly simpler proof than the analogous one in the
text for equivalent metrics.

Theorem 15.3.2. Suppose ρ and σ are uniformly equivalent metrics on M.
Then xn → x with respect to ρ iff xn → x with respect to σ.

Proof. Since σ(xn, x) ≤ c2ρ(xn, x), it follows that ρ(xn, x) → 0 implies
σ(xn, x)→ 0. Similarly for the other implication.

The following theorem is a generalisation of Problem 12 page 203.

Example 15.3.3. The metrics ρp on Rn are uniformly equivalent to one an-
other.

Proof. It is sufficient to show that ρp for 1 ≤ p < ∞ is equivalent to ρ∞
(since if two metrics are each uniformly equivalent to a third metric, then from
Definition15.3.1 it follows fairly easily that they are uniformly equivalent to one
another — Exercise).

But

ρp(x,y) =
(
|x1 − y1|p + · · ·+ |xn − yn|p

)1/p

≤
(

n max
1≤i≤n

|xi − yi|p
)1/p

= n1/pρ∞(x,y),

and

ρ∞(x,y) = max
1≤i≤n

|xi − yi| ≤ ρp(x,y).

This completes the proof.

Remark 15.3.1. The metrics ρp on function spaces are not uniformly equiva-
lent (or even equivalent).

It is easiest to see this for ρ1 and ρ∞ on R[a, b] (the space of Riemann inte-
grablefunctions on [a, b]). It follows from the example in the prevous section, since
fn → f with respect to ρ1 but not with respect to ρ∞.

47Remember that “Riemann integrable” implies “bounded” according to our definitions.
48What is here called “uniformly equivalent” is usually called “equivalent”. But for consis-

tency, I will keep to the convention in Reed.
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15.4. Cauchy sequences and completeness. The reference here is Reed
§5.7 to the end of page 204.

The definition of a Cauchy sequence is exactly as for Definition 11.5.1 in Rp .

Definition 15.4.1. A sequence (xn) is a Cauchy sequence if for any ε > 0
there is a corresponding N such that

m, n ≥ N ⇒ ρ (xm,xn) ≤ ε.

It follows from the Definition in Reed Page 177 that for a sequence of functions
“Cauchy in the sup norm” is the same as “Cauchy with respect to the sup metric”.

It follows as for convergence, that a sequence is Cauchy with respect to one
metric then it is Cauchy with respect to any uniformly equivalent metric.

The definition of a complete metric space is extremely important (Reed page 204).

Definition 15.4.2. A metric space (M, ρ) is complete if every Cauchy se-
quence fromM converges to an element in M.

Moreover (Problem 10(a) page 209):

Theorem 15.4.3. Suppose ρ and σ are uniformly equivalent metrics on M.
Then (M, ρ) is complete iff (M, σ) is complete.

Proof. Suppose (M, ρ) is complete. Let (xn) be Cauchy with respect to σ.
Then it is Cauchy with respect to ρ and hence converges to x (say) with respect
to ρ. By Theorem 15.3.2, xn → x with respect to σ. It follows that (M, σ) is
complete.

Example 15.4.4. The Cauchy Completeness Axiom says that (R, ρ2) is com-
plete, and it follows from Proposition 11.5.3 that (Rn, ρ2) is also complete.

It then follows from the previous theorem that (Rn, ρp) is complete for any
1 ≤ p ≤ ∞.

More generally, if M ⊆ Rn is closed, then (M, ρp) is complete for any 1 ≤ p ≤
∞. To see this, consider any Cauchy sequence (xi) in (M, ρ2). Since (xi) is also a
Cauchy sequence in Rn it converges to x (say) in Rn. Since M is closed, x ∈ M .
Hence (M, ρ2) is complete. It follows from the previous theorem that (M, ρp) is
complete for any 1 ≤ p ≤ ∞.

If M ⊆ Rn is not closed, then (M, ρp) is not complete. To see this, choose a
sequence (xi) in M such that xi → x 6∈M . Since (xi) converges in Rn it is Cauchy
in Rn and hence in M , but it does not converge to a member of M . Hence (M, ρp)
is not complete.

Example 15.4.5. (C[a, b], ρ∞) is complete from Reed Theorem 5.3.3 page 178.
However, (C[a, b], ρ1) is not complete.
To see this, consider the example in Section 15.2. It is fairly easy to see that

the sequence (fn) is Cauchy in the ρ1 metric. In fact if m > n then

ρ1(fn, fm) =
∫ 1/n

0

|fn − fm| ≤
∫ 1/n

0

|fn|+ |fm| ≤ 2/n.

Since fn → f in the larger space (R[−1, 1], ρ1) of Riemann integrable functions
on [−1, 1] with the ρ1 metric, it follows that (fn) is Cauchy in this space, and hence
is also Cauchy in (C[a, b], ρ1). But fn does not converge to a member of this space49.

49If it did, it would converge to the same function in the larger space, contradicting uniqueness
of limits in the larger space
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15.5. Contraction Mapping Principle. The reference here is Reed §5.7.

The definition of a contraction in Section 11.6 for a function F : S → S where
S ⊆ Rp applies with S replaced by M and d replaced by ρ for any metric space
(M, ρ).

The Contraction Mapping Theorem, Theorem 11.6.1 applies with exactly the
same proof, for any complete metric space (M, ρ) instead of the closed set S and
the Euclidean metric d. Or see Reed Theorem 5.7.1 page 205.

Completeness is needed in the proof in order to show that the Cauchy sequence
of iterates actually converges to a member of M.

In Section 16 we will give some important applications of the Contraction
Mapping Principle. In particular, we will apply it to the complete metric space
(C, [a, b], ρ∞).

15.6. Topological notions in metric spaces*. In this section I will point
out that much of what we proved for (Rn, d) applies to an arbitrary metric space
(M, ρ) with the same proofs. The extensions are straightforward and I include
them for completeness and future reference in the Analysis II course. But we will
not actually need the material in this course.

References at about the right level are “Primer of Modern Analysis” by Ken-
nan T. Smith, Chapter 7, and “An Introduction to Analysis” (second edition) by
William Wade, Chapter 10.

The definitions of neighbourhood, open ball Br(x), and open set are analogous
to those in Section 10.5. Theorem 10.5.2 remains true with Rn replaced byM.

The definition of closed set is analogous to that in Section 10.6 and Theo-
rem 10.6.2 is true with Rn replaced byM.

The definitions of boundary point, boundary, interior point, interior, exterior
point and exterior are analogous to those in Section 10.8. The three dot points
there are true for S ⊆M.

The product of two metric spaces (M1, ρ1) and (M2, ρ2) is the set M1 ×M2

with the metric ρ1 × ρ2 defined by

(ρ1 × ρ2)
(
(x1, y1), (x2, y2)

)
=

√
ρ1(x1, y1)2 + ρ2(x2, y2)2.

If A1 is open in (M1, ρ1) and A2 is open in (M2, ρ2) the A1 × A2 is open in
(M1 ×M2, ρ1 × ρ2). The proof is the same as Theorem 10.10.1.

A set is closed iff every convergent sequence from the set has its limit in the
set ; the proof is the same as for Theorem 11.2.1.

The definition of a bounded set is the same as in Section 11.3, tha analogue
of Proposition 11.3.2 holds (with the origin replaced by any fixed point a∗ ∈ M),
convergent sequences are bounded (Proposition 11.3.4).

Bounded sequences do not necessarily have a convergent subsequence (c.f. The-
orem 11.4.2). The sequence (fn) in Section 15.2 is bounded in C[−1, 1] but no
subsequence converges. In fact it is not too hard to check that

ρ∞(fn, fm) ≥ 1
2

if m ≥ 2n. To see this take x = 1
m . Then

|fm(x)− fn(x)| = 1− n

m
≥ 1− 1

2
=

1
2
.

It follows that no subsequence can be Cauchy, and in particular no subsequence
can converge.

Cauchy sequences are defined as in Definition 11.5.1. Convergent sequences
are Cauchy, this is proved easily as for sequences of real numbers. But Cauchy
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sequences will not necesarily converge (to a point in the metric space) unless the
metric space is complete.

A metric space (M, ρ) is sequentially compact if every sequence from M has
a convergent subsequence (to a point in M). This corresponds to the set A in
Definition 12.1.1 being sequentially compact. The metric space (M, ρ) is compact
if every open cover (i.e. a cover of M by subsets of M that are open in M) has a
finite subcover. This corresponds to the set A in Definition 12.2.2 being compact
(although A is covered by sets which are open in Rp, the restriction of these sets
to A is a cover of A by sets that are open in A).

A subset of a metric space (M, ρ) is sequentially compact (compact) iff it is
sequentially compact (compact) when regarded as a metric space with the induced
metric from M.

A metric space (M, ρ) is totally bounded if for every ε > 0 there is a cover of
M by a finite number of open balls (in M) of radius ε. Then it can be proved
a metric space is totally bounded iff every sequence has a Cauchy subsequence; see
Smith Theorem 9.9. (Note that what Smith calls “compact” is what is here, and
usually, called “sequentially compact”.)

A metric space is complete and totally bounded iff it is sequentially compact iff
it is compact. This is the analogue of Theorems 12.1.2 and 12.3.1, where the metric
space corresponds to A with the metric induced from Rp.

The proof of the first ‘iff” is fairly straightforward. First suppose (M, ρ) is
complete and totally bounded. If (xn) is a sequence fromM then it has a Cauchy
subsequence by the result two paragraphs back, and this subsequence converges to
a limit inM by completeness and so (M, ρ) is sequentially compact. Next suppose
(M, ρ) is sequentially compact. Then it is totally bounded again by the result two
paragraphs back. To show it is complete suppose the sequence (xn) is Cauchy: first
by compactness it has a subsquence which converges to a member ofM, and second
we use the fact (Exercise) that if a Cauchy sequence has a convergent subsequence
then the Cauchy sequence itself must converge to the same limit as the subsequence.

The proof of the second “iff” is similar to that on Theorem 12.3.1. The proof
that “compact” implies “sequentially compact” is esentially identical. The proof
in the other direction uses the existence of a countable dense subset of M. (This
replaces the idea of considering those points in Rp all of whose components are
rational.) We say a subset D ofM is dense if for each x ∈M and each ε > 0 there
is an x∗ ∈ D such that x ∈ Bε(x∗). The existence of a countable dense subset of
M follows from sequential compactness.50

If (M, ρ) and (N , σ) are metric spaces and f : M → N then we say f is
continuous at a ∈M if

(xn) ⊆M and xn → a⇒ f(xn)→ f(a).

It follows that f is continuous at a iff for every ε > 0 there is a δ > 0 such that for
all x, y ∈M:

ρ(x, y) < δ ⇒ σ(f(x), f(y)) < ε.

The proof is the same as for Theorem 7.1.2. One defines uniform continuity as in
Definition 13.1.3.

A continuous function defined on a compact set is bounded above and below and
has a maximum and a minimum value. Moreoveor it is uniformly continuous. The

50We have already noted that a sequentially compact set is totally bounded. Let Ak be
the finite set of points corresponding to ε = 1

k
in the definition of total boundedness. Let A =⋃∞

k=1 Ak. Then A is countable. It is also dense, since if x ∈ M then there exist points in A as

close to x as we wish.
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proof is the same as for Theorem 13.2.1, after using the fact that compactness is
equivalent to sequential compactness.

Limit points, isolated points, the definition of limit of a function at a point,
and the equivalence of this definition with the ε–δ characterisation, are completely
analogous to Definition 13.3.1 and Theorem 13.3.2.

A function f : M → N is continuous iff the inverse image of every open
(closed) set in N is open (closed) in M. The proof is esentially the same as in
Theorem 13.4.3.

The continuous image of a compact set is compact. The proof is the same as
in Theorem 13.5.1.

The inverse of a one-to-one continuous function defined on a compact set is
continuous. The proof is essentially the same as for Theorem 13.5.2.
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16. Some applicatons of the Contraction Mapping Principle

16.1. Markov processes. Recall Theorem 4.0.2:

Theorem 16.1.1. If all entries in the probability transition matrix P are greater
than 0, and x0 is a probability vector, then the sequence of vectors

x0, Px0, P 2x0, . . . ,

converges to a probability vector x∗, and this vector does not depend on x0.
Moreover, the same results are true even if we just assume P k has all entries

non-zero for some integer k > 1.
The vector x∗ is the unique non-zero solution of (P − I)x∗ = 0.

We will give a proof that uses the Contraction Mapping Principle. The proof
is rather subtle, since P is only a contraction with respect to the ρ1 metric, and it
is also necessary to restrict to the subset of Rn consisting of those vectors a such
that

∑
ai = 1.

Lemma 16.1.2. Suppose P is a probability transition matrix all of whose entries
are at least ε, for some ε > 0. Then P is a contraction map on

M = {a ∈ Rn |
∑

ai = 1 }.

in the ρ1 metric, with contraction constant 1− nε.

Proof. We will prove that

ρ1(Pa, Pb) ≤ (1− nε) ρ1(a,b)(24)

for all a,b ∈M.
Suppose a,b ∈M. Let v = a− b. Then v ∈ H, where

H = {v ∈ Rn |
∑

vi = 0 }.
Moreover,

ρ1(a,b) = ‖a− b‖1 = ‖v‖1,
ρ1(Pa, Pb) = ‖Pa− Pb‖1 = ‖Pv‖1,

where ‖w‖1 =
∑
|wi|.

Thus in order to prove (24) it is sufficient to show

‖Pv‖1 ≤ (1− nε) ‖v‖1(25)

for all v ∈ H.
From the following Lemma, we can write

v =
∑
ij

ηij(ei − ej), where ηij > 0, ‖v‖1 = 2
∑

ηij .(26)

Then

‖Pv‖1 =
∥∥∥∑
ij

ηijP (ei − ej)
∥∥∥

1

≤
∑
ij

ηij ‖P (ei − ej)‖1

(by the triangle inequality for ‖ · ‖1 and using ηij > 0)

=
∑
ij

ηij

∥∥∥∑
k

(Pki − Pkj) ek
∥∥∥

1

=
∑
ij

ηij
∑
k

|Pki − Pkj |
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=
∑
ij

ηij
∑
k

(
Pki + Pkj − 2 min{Pki, Pkj}

)
(since |a − b| = a + b − 2 min{a, b} for any real numbers a and b, as one sees by
checking, without loss of generality, the case b ≤ a)

=
∑
ij

ηij(2− 2ε)

(since the columns in P sum to 1 and each entry is ≥ ε )

= (1− nε)‖v‖1 (from (26))

This completes the proof.

Lemma 16.1.3. Suppose v ∈ Rn and
∑

vi = 0. Then v can be written in the
form

v =
∑
i,j

ηij(ei − ej), where ηij > 0, ‖v‖1 = 2
∑

ηij .

Proof. If v is in the span of two basis vectors, then after renumbering we
have

v = v1e1 + v2e2 (where v1 + v2 = 0)

= v1(e1 − e2)

= v2(e2 − e1).

Since either v1 ≥ 0 and then ‖v‖1 = 2v1, or v2 ≥ 0 and then ‖v‖1 = 2v2, this
proves the result in this case.

Suppose the claim is true for any v ∈ H which is in the span of k basis vectors.
Assume that v is spanned by k + 1 basis vectors, and write (after renumbering if
necessary)

v = v1e1 + · · ·+ vk+1ek+1.

where v1 + · · ·+ vk+1 = 0.
Choose p so

|vp| = max{ |v1|, . . . , |vk+1| }.
Choose q so vq has the opposite sign to vp (this is possible since

∑
vi = 0). Note

that

|vp + vq| = |vp| − |vq|(27)

since |vq| ≤ |vp| and since vq has the opposite sign to vp.
Write (where ̂ indicates that the relevant term is missing from the sum)

v =
(
v1e1 + · · ·+ v̂qeq + · · ·+ (vp + vq)ep + · · ·+ vkn+1ek+1

)
+ vq(eq − ep)

= v∗ + vq(eq − ep).

Since v∗ has no eq component, and the sum of the coefficients of v∗ is
∑

vi = 0,
we can apply the inductive hypothesis to v∗ to write

v∗ =
∑

ηij(ei − ej), where ηij > 0, ‖v∗‖1 = 2
∑

ηij .

In particular,

v =

{∑
ηij(ei − ej) + |vq|(eq − ep) vq ≥ 0∑
ηij(ei − ej) + |vq|(ep − eq) vq ≤ 0



16. SOME APPLICATONS OF THE CONTRACTION MAPPING PRINCIPLE 78

All that remains to be proved is

‖v‖1 = 2
∑

ηij + 2|vq|,
i.e.

‖v‖1 = ‖v∗‖1 + 2|vq|.(28)

But

‖v∗‖1 = |v1|+ · · ·+ |̂vq|+ · · ·+ |vp + vq|+ · · ·+ |vk+1|
= (|v1|+ · · ·+ |vk+1|)− |vq| − |vp|+ |vp + vq|
= (|v1|+ · · ·+ |vk+1|)− 2|vq| by (27)

= ‖v‖1 − 2|vq|.
This proves (28) and hence the Lemma.

Proof of Theorem 16.1.1. The first paragraph of the theorem follows from
the Contraction Mapping Principle and Lemma 16.1.2.

The last paragraph was proved after the statement of Theorem 4.0.2.

For the second paragraph we consider a sequence P i(x0) with i → ∞. From
Lemma 16.1.2, P k is a contraction map with contraction constant λ (say). For any
natural number i we can write i = mk + j, where 0 ≤ j < k.

Then

ρ1(P ix0,x∗) = ρ1(Pmk+jx0,x∗)

≤ ρ1(Pmk+jx0, P
mkx0) + ρ1(Pmkx0,x∗)

≤ ρ1

(
(P k)mP jx0, (P k)mx0

)
+ ρ1((P k)mx0,x∗)

≤ λmρ1

(
P jx0,x0

)
+ ρ1((P k)mx0,x∗)

≤ λm max
0≤j<k

ρ1

(
P jx0,x0

)
+ ρ1((P k)mx0,x∗).

(Note that m → ∞ as i → ∞). The first term approaches 0 since λm → 0
and the second approaches 0 by the Contraction Mapping Principle applied to the
contraction map P k.

Remark 16.1.1. The fact we only needed to assume some power of P was a
contraction map can easily be generalised.

That is, in the Contraction Mapping Principle, Theorem 11.6.1, if we assume
1

F ◦ · · · ◦
k

F is a contraction map for some k then there is still a unique fixed point.
The proof is similar to that above for P .

16.2. Integral Equations. See Reed Section 5.4 for discussion.

Instead of the long proof in Reed of the main theorem, Theorem 5.4.1, we see
here that it is a consequence of the Contraction Mapping Theorem.

Theorem 16.2.1. Let F (x) be a continuous function defined on [a, b]. Suppose
K(x, y) is continuous on [a, b]× [a, b] and

M = max{|K(x, y)| | a ≤ x ≤ b, a ≤ y ≤ b}.
Then there is a unique continuous function ψ(x) defined on [a, b] such that

ψ(x) = f(x) + λ

∫ b

a

K(x, y) ψ(y) dy,(29)

provided |λ| < 1
M(b−a) .
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Proof. We will use the contraction mapping principle on the complete metric
space (C[a, b], ρ∞).

Define

T : C[a, b]→ C[a, b]

by

(Tψ)(x) = f(x) + λ

∫ b

a

K(x, y) ψ(y) dy(30)

Note that if ψ ∈ C[a, b], then Tψ is certainly a function defined on [a, b] — the
value of Tψ at x ∈ [a, b] is obtained by evaluating the right side of (30). For fixed
x, the integrand in (30) is a continuous function of y, and so the integral exists.

We next claim that Tψ is continuous, and so indeed T : C[a, b]→ C[a, b].
The first term on the right side of (30) is continuous, being f .
The second term is also continuous. To see this let G(x, y) = K(x, y) ψ(y) and

let g(x) =
∫ b
a

G(x, y) dy. Then Tψ = f + λg. To see that g is continuous on [a, b],
first note that

|g(x1)− g(x2)| =
∣∣∣∫ b

a

G(x1, y)−G(x2, y) dy
∣∣∣ ≤ ∫ b

a

|G(x1, y)−G(x2, y)| dy.(31)

Now suppose ε > 0. Since G(x, y) is continuous on the closed bounded set [a, b]×
[a, b], it is uniformly continuous there (by Theorem 13.2.1). Hence there is a δ > 0
such that

|(x1, y1)− (x2, y2)| < δ ⇒ |G(x1, y1)−G(x2, y2)| < ε.

Using this it follows from (31) that

|x1 − x2| < δ ⇒ |g(x1)− g(x2)| < ε(b− a).

Hence g is uniformly continuous on [a, b].
This completes the proof that Tψ is continuous (in fact uniformly) on [a, b].

Hence

T : C[a, b]→ C[a, b].

Moreover, ψ is a fixed point of T iff ψ solves (29).

We next claim that T is contraction map on C[a, b]. To see this we estimate

|Tψ1(x)− Tψ2(x)| = |λ|
∣∣∣∫ b

a

K(x, y) (ψ1(y)− ψ2(y)) dy
∣∣∣

≤ |λ|
∫ b

a

|K(x, y)| |ψ1(y)− ψ2(y)| dy

≤ |λ|M(b− a) ρ∞(ψ1, ψ2).

Since this is true for every x ∈ [a, b], it follows that

ρ∞(Tψ1, Tψ2) ≤ |λ|M(b− a) ρ∞(ψ1, ψ2).

By the assumption on λ, it follows that T is a contraction map with contraction
ratio |λ|M(b− a), which is < 1.

Because (C[a, b], ρ∞) is a complete metric space, it follows that T has a unique
fixed point, and so there is a unique continuous function ψ solving (29).
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Remark 16.2.1. Note that we also have a way of approximating the solution.
We can begin with some function such as

ψ0(x) = 0 for a ≤ x ≤ b,

and then successively apply T to find better and better approximations to the
solution ψ.

In practice, we apply some type of numerical integration to find approximations
to Tψ0, T 2ψ0, T 3ψ0, . . . .

16.3. Differential Equations. In this section we will prove the Fundamental
Existence and Uniqueness Theorem for Differential Equations, Theorem 7.1.1 of
Reed.

You should first read Chapter 7 of Reed up to the beginning of Theorem 7.1.1.
We will prove Theorem 7.1.1 here, but with a simpler proof using the Contrac-

tion Mapping Principle.

Theorem 16.3.1. Let f be continuously differentiable on the square

S = [t0 − δ, t0 + δ]× [y0 − δ, y0 + δ].

Then there is a T ≤ δ, and a unique continuously differentiable function y(t) defined
on [t0 − T, t0 + T ], such that

dy

dt
= f(t, y) on [t0 − T, t0 + T ],

y(t0) = y0.
(32)

Remark 16.3.1.

1. The diagram shows the square S centred at (t0, y0) and illustrates the situ-
ation. We are looking for the unique curve through the point (t0, y0) which
at every point is tangent to the line segment of slope f(t, y).

Note that the solution through the point (t0, y0) “escapes” through the
top of the square S, and this is why we may need to take T < δ.

From the diagram, the absolute value of the slope of the solution will
be ≤ M , where M = max{ |f(t, y) | (t, y) ∈ S }. For this reason, we will
require that MT ≤ δ, i.e. T ≤ δ/M .
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2. The function y(t) must be differentiable for the differential equation to be
defined. But it then follows from the differential equation that dy/dt is in
fact continuous.

* In fact more is true. The right side of the differential equation is
differentiable (why?) and its derivative is even continuous (why?). This
shows that dy/dt is differentiable with continuous derivative, i.e. y(t) is in
fact twice continuously differentiable. If f is infinitely differentiable, it can
similarly be shown that y(t) is also infinitely differentiable.

Proof of Theorem.

Step 1 : We first reduce the problem to an equivalent integral equation (not the
same one as in the last section, however).

It follows by integrating (32) from t0 to t that any solution y(t) of (32) satisfies

y(t) = y0 +
∫ t

t0

f(s, y(s)) ds.(33)

Conversely, any continuous function y(t) satisfying (33) is differentiable (by the
Fundamental Theorem of Calculus) and its derivative satisfies the differential equa-
tion in (32). It also satisfies the initial condition y(t0) = y0 (why? ).

Step 2 : We next show that (33) is the same as finding a certain “‘fixed point”.
If y(t) is a continuous function defined on [t0 − δ, t0 + δ], let Fy (often writ-

ten F (y)) be the function defined by

(Fy)(t) = y0 +
∫ t

t0

f(s, y(s)) ds.(34)

For the integral to be defined, we require that (s, y(s)) belong to the square
S, and for this reason we will need to restrict to functions y(t) defined on some
sufficiently small interval [t0 − T, t0 + T ].

More precisely, since f is continuous and hence bounded on S, it follows that
there is a constant M such that

(t, y) ∈ S ⇒ |f(t, y)| ≤M.

This implies from (34) that

|(Fy)(t)− y0| ≤M |t− t0|.
It follows that if the graph of y(t) is in S, then so is the graph of (Fy)(t), provided
t satisfies M |t− t0| ≤ δ.

For this reason, we impose the restriction on T that MT ≤ δ, i.e.

T ≤ δ

M
.(35)

This ensures that (Fy)(t) is defined for t ∈ [t0 − T, t0 + T ].
Since f(s, y(s)) is continuous, being a composition of continuous functions, it

follows from the Fundamental Theorem of Calculus that (Fy)(t) is differentiable,
and in particular is continuous. Hence

F : C[t0 − T, t0 + T ]→ C[t0 − T, t0 + T ].

Moreover, it follows from the definition (34) that y(t) is a fixed point of F iff y(t)
is a solution of (33) on [t0 − T, t0 + T ] and hence iff y(t) is a solution of (32) on
[t0 − T, t0 + T ].

Step 2 : We next impose a further restriction on T in order that F be a contraction
map. For this we need the fact that since ∂f

∂t is continuous on S, there is a constant
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K such that

(t, y) ∈ S ⇒
∣∣∣∂f

∂y

∣∣∣ ≤ K.

We now compute for any t ∈ [t0 − T, t0 + T ] and any y1, y2 ∈ C[t0 − T, t0 + T ],
that

|Fy1(t)− Fy2(t)| =
∣∣∣∫ t

t0

f(s, y1(s))− f(s, y2(s)) ds
∣∣∣

≤
∫ t

t0

∣∣∣f(s, y1(s))− f(s, y1(s))
∣∣∣ ds

≤
∫ t

t0

K |y1(s)− y2(s)| ds by the Mean Value Theorem

≤ KT ρ∞(y1, y2)

since |t− t0| ≤ T and since |y1(s)− y2(s)| ≤ ρ∞(y1, y2).

Since t is any point in [t0 − T, t0 + T ], it follows that

ρ∞(Fy1, Fy2) ≤ KT ρ∞(y1, y2).

We now make the second restriction on T that

T ≤ 1
2K

.(36)

This guarantees that F is a contraction map on C[t0−T, t0+T ] with contraction
constant 1

2 . It follows that F has a unique fixed point, and that this is then the
unique solution of (32).

Remark 16.3.2. It appears from the diagram that we do not really need the
second restriction (36) on T . In other words, we should only need (35). This is
indeed the case. One can show by repeatedly applying the previous theorem that
the solution can be continued until it either escapes through the top, bottom or
sides of S. In fact this works for much more general sets S.

In particular, if the function f(t, y) and the differential equation are defined
for all (t, y) ∈ R2, then the solution will either approach +∞ or −∞ at some finite
time t∗, or will exist for all time. For more discussion see Reed Section 7.2.

Remark 16.3.3. The same proof, with only notational changes, works for gen-
eral first order systems of differential equations of the form

dy1

dt
= f1(t, y1, y2, . . . , yn)

dy2

dt
= f2(t, y1, y2, . . . , yn)

...
dyn
dt

= fn(t, y1, y2, . . . , yn).

Remark 16.3.4. Second and higher order differential equations can be reduced
to first order systems by introducing new variables for the lower order derivates.

For example, the second order differential equation

y′′ = F (t, y, y′)

is equivalent to the first order system of differential equations

y′1 = y2, y′2 = F (t, y1, y2).
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To see this, suppose y(t) is a solution of the given differential equation and let
y1 = y, y2 = y′. Then clearly y1(t), y2(t) solve the first order system.

Conversely, if y1(t), y2(t) solve the first order system let y = y1. Then y′ = y2

and y(t) solves the second order differential equation.

It follows from the previous remark that a similar Existence and Uniqueness
Theorem applies to second order differential equations, provided we specify both
y(t0) and y′(t0).

A similar remark applies to nth order differential equations, except that one
must specify the first n− 1 derivatives at t0.

Finally, similar remarks also apply to higher order systems of differential equa-
tions. There are no new ideas involved, just notation!
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17. Differentiation of Real-Valued Functions

I have included quite a lot of additional material, for future reference.
You need only consider Subsections 1, 3, 4, 5, 7, 8, 10. What is required is just

a basic understanding of the ideas and application to straightforward examples.

Note that the definition of “differentiable” on Reed page 155 is completely non-
standard. It is the same as what is here, and elsewhere, called “continuously dif-
ferentiable”.

17.1. Introduction. In this section we discuss the notion of derivative (i.e.
differential) for functions f : D (⊂ Rn) → R. In the next chapter we consider the
case for functions f :D (⊂ Rn)→ Rm.

If m = 1 and n = 1 or 2, we can sometimes represent such a function by
drawing its graph. In case n = 2 (or perhaps n = 3) we can draw the level sets, as
is done in Section 17.6.

Convention Unless stated otherwise, we consider functions f : D(⊂ Rn)→ R
where the domain D is open. This implies that for any x ∈ D there exists r > 0
such that Br(x) ⊂ D.

Most of the following applies to more general domains D by taking one-sided,
or otherwise restricted, limits. No essentially new ideas are involved.

17.2. Algebraic Preliminaries. The inner product in Rn is represented by

y · x = y1x1 + . . . + ynxn

where y = (y1, . . . , yn) and x = (x1, . . . , xn).
For each fixed y ∈ Rn the inner product enables us to define a linear function

Ly = L : Rn → R

given by
L(x) = y · x.

Conversely, we have the following.

Proposition 17.2.1. For any linear function

L :Rn → R

there exists a unique y ∈ Rn such that

L(x) = y · x ∀x ∈ Rn.(37)

The components of y are given by yi = L(ei).
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Proof. Suppose L :Rn → R is linear. Define y = (y1, . . . , yn) by

yi = L(ei) i = 1, . . . , n.

Then

L(x) = L(x1e1 + · · ·+ xnen)
= x1L(e1) + · · ·+ xnL(en)
= x1y1 + · · ·+ xnyn

= y · x.

This proves the existence of y satisfying (37).
The uniqueness of y follows from the fact that if (37) is true for some y, then

on choosing x = ei it follows we must have

L(ei) = yi i = 1, . . . , n.

Note that if L is the zero operator , i.e. if L(x) = 0 for all x ∈ Rn, then the
vector y corresponding to L is the zero vector.

17.3. Partial Derivatives.

Definition 17.3.1. The ith partial derivative of f at x is defined by

∂f

∂xi
(x) = lim

t→0

f(x + tei)− f(x)
t

(38)

= lim
t→0

f(x1, . . . , xi + t, . . . , xn)− f(x1, . . . , xi, . . . , xn)
t

,

provided the limit exists. The notation Dif(x) is also used.

Thus
∂f

∂xi
(x) is just the usual derivative at t = 0 of the real-valued function g

defined by g(t) = f(x1, . . . , xi + t, . . . , xn). Think of g as being defined along the
line L, with t = 0 corresponding to the point x.

17.4. Directional Derivatives.

Definition 17.4.1. The directional derivative of f at x in the direction v 6= 0
is defined by

Dvf(x) = lim
t→0

f(x + tv)− f(x)
t

,(39)

provided the limit exists.
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17. DIFFERENTIATION OF REAL-VALUED FUNCTIONS 88

It follows immediately from the definitions that
∂f

∂xi
(x) = Deif(x).(40)

Note that Dvf(x) is just the usual derivative at t = 0 of the real-valued function
g defined by g(t) = f(x + tv). As before, think of the function g as being defined
along the line L in the previous diagram.

Thus we interpret Dvf(x) as the rate of change of f at x in the direction v; at
least in the case v is a unit vector.

Exercise: Show that Dαvf(x) = αDvf(x) for any real number α.

17.5. The Differential (or Derivative).
Motivation Suppose f : I (⊂ R) → R is differentiable at a ∈ I. Then f ′(a) can
be used to define the best linear approximation to f(x) for x near a. Namely:

f(x) ≈ f(a) + f ′(a)(x− a).(41)

Note that the right-hand side of (41) is linear in x. (More precisely, the right
side is a polynomial in x of degree one.)

The error, or difference between the two sides of (41), approaches zero as x→ a,
faster than |x− a| → 0. More precisely∣∣∣f(x)−

(
f(a) + f ′(a)(x− a)

)∣∣∣
|x− a| =

∣∣∣∣∣∣
f(x)−

(
f(a) + f ′(a)(x− a)

)
x− a

∣∣∣∣∣∣



      graph of
x  |→ f(a)+L(x -a)

graph of
x |→ f(x)
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|f(x) - (f(a)+L(x -a))|
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=
∣∣∣∣f(x)− f(a)

x− a
− f ′(a)

∣∣∣∣
→ 0 as x→ a.(42)

We make this the basis for the next definition in the case n > 1.

Definition 17.5.1. Suppose f : D (⊂ Rn) → R. Then f is differentiable at
a ∈ D if there is a linear function L :Rn → R such that∣∣∣f(x)−

(
f(a) + L(x− a)

)∣∣∣
|x− a| → 0 as x→ a.(43)

The linear function L is denoted by f ′(a) or df(a) and is called the derivative or
differential of f at a. (We will see in Proposition 17.5.2 that if L exists, it is
uniquely determined by this definition.)

The idea is that the graph of x 7→ f(a) + L(x− a) is “tangent” to the graph of
f(x) at the point

(
a, f(a)

)
.

Notation: We write 〈df(a),x−a〉 for L(x−a), and read this as “df at a applied to
x− a”. We think of df(a) as a linear transformation (or function) which operates
on vectors x− a whose “base” is at a.

The next proposition gives the connection between the differential operating
on a vector v, and the directional derivative in the direction corresponding to v.
In particular, it shows that the differential is uniquely defined by Definition 17.5.1.

Temporarily, we let df(a) be any linear map satisfying the definition for the
differential of f at a.

Proposition 17.5.2. Let v ∈ Rn and suppose f is differentiable at a.
Then Dvf(a) exists and

〈df(a),v〉 = Dvf(a).

In particular, the differential is unique.
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Proof. Let x = a + tv in (43). Then

lim
t→0

∣∣∣f(a + tv)−
(
f(a) + 〈df(a), tv〉

)∣∣∣
t

= 0.

Hence

lim
t→0

f(a + tv)− f(a)
t

− 〈df(a),v〉 = 0.

Thus

Dvf(a) = 〈df(a),v〉
as required.

Thus 〈df(a),v〉 is just the directional derivative at a in the direction v.
The next result shows df(a) is the linear map given by the row vector of partial

derivatives of f at a.

Corollary 17.5.3. Suppose f is differentiable at a. Then for any vector v,

〈df(a),v〉 =
n∑
i=1

vi
∂f

∂xi
(a).

That is, df(a) is the row vector
[
∂f
∂x1 (a), . . . , ∂f

∂xn (a)
]
.

Proof.

〈df(a),v〉 = 〈df(a), v1e1 + · · ·+ vnen〉
= v1〈df(a), e1〉+ · · ·+ vn〈df(a), en〉
= v1De1f(a) + · · ·+ vnDenf(a)

= v1 ∂f

∂x1
(a) + · · ·+ vn

∂f

∂xn
(a).

Example 17.5.4. Let f(x, y, z) = x2 + 3xy2 + y3z + z.
Then

〈df(a),v〉 = v1
∂f

∂x
(a) + v2

∂f

∂y
(a) + v3

∂f

∂z
(a)

= v1(2a1 + 3a2
2) + v2(6a1a2 + 3a2

2a3) + v3(a2
3 + 1).

Thus df(a) is the linear map corresponding to the row vector (2a1 + 3a2
2, 6a1a2 +

3a2
2a3, a2

3 + 1).
If a = (1, 0, 1) then 〈df(a),v〉 = 2v1 + v3. Thus df(a) is the linear map corre-

sponding to the row vector (2, 0, 1).

If a = (1, 0, 1) and v = e1 then 〈df(1, 0, 1), e1〉 =
∂f

∂x
(1, 0, 1) = 2.

Definition 17.5.5. (Rates of Convergence) If a function ψ(x) has the prop-
erty that

|ψ(x)|
|x− a| → 0 as x→ a,

then we say “|ψ(x)| → 0 as x → a, faster than |x − a| → 0”. We write o(|x − a|)
for ψ(x), and read this as “little oh of |x− a|”.

If
|ψ(x)|
|x− a| ≤M ∀|x− a| < ε,
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for some M and some ε > 0, i.e. if
|ψ(x)|
|x− a| is bounded as x → a, then we say

“|ψ(x)| → 0 as x → a, at least as fast as |x − a| → 0”. We write O(|x − a|) for
ψ(x), and read this as “big oh of |x− a|”.

Example 17.5.6. we can write

o(|x− a|) for |x− a|3/2,
and

O(|x− a|) for sin(x− a).

Clearly, if ψ(x) can be written as o(|x − a|) then it can also be written as
O(|x− a|), but the converse may not be true as the above example shows.

The next proposition gives an equivalent definition for the differential of a
function.

Proposition 17.5.7. If f is differentiable at a then

f(x) = f(a) + 〈df(a),x− a〉+ ψ(x),

where ψ(x) = o(|x− a|).
Conversely, suppose

f(x) = f(a) + L(x− a) + ψ(x),

where L :Rn → R is linear and ψ(x) = o(|x−a|). Then f is differentiable at a and
df(a) = L.

Proof. Suppose f is differentiable at a. Let

ψ(x) = f(x)−
(
f(a) + 〈df(a),x− a〉

)
.

Then

f(x) = f(a) + 〈df(a),x− a〉+ ψ(x),

and ψ(x) = o(|x− a|) from Definition 17.5.1.
Conversely, suppose

f(x) = f(a) + L(x− a) + ψ(x),

where L :Rn → R is linear and ψ(x) = o(|x− a|). Then

f(x)−
(
f(a) + L(x− a)

)
|x− a| =

ψ(x)
|x− a| → 0 as x→ a,

and so f is differentiable at a and df(a) = L.

Finally we have:

Proposition 17.5.8. If f, g :D (⊂ Rn) → R are differentiable at a ∈ D, then
so are αf and f + g. Moreover,

d(αf)(a) = αdf(a),
d(f + g)(a) = df(a) + dg(a).

Proof. This is straightforward (exercise) from Proposition 17.5.7.

The previous proposition corresponds to the fact that the partial derivatives for
f + g are the sum of the partial derivatives corresponding to f and g respectively.
Similarly for αf 51.

51We cannot establish the differentiability of f + g (or αf) this way, since the existence of
the partial derivatives does not imply differentiability.
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17.6. The Gradient. Strictly speaking, df(a) is a linear operator on vectors
in Rn (where, for convenience, we think of these vectors as having their “base at
a”).

We saw in Section 17.2 that every linear operator from Rn to R corresponds to
a unique vector in Rn. In particular, the vector corresponding to the differential at
a is called the gradient at a.

Definition 17.6.1. Suppose f is differentiable at a. The vector ∇f(a) ∈ Rn
(uniquely) determined by

∇f(a) · v = 〈df(a),v〉 ∀v ∈ Rn,

is called the gradient of f at a.

Proposition 17.6.2. If f is differentiable at a, then

∇f(a) =
(

∂f

∂x1
(a), . . . ,

∂f

∂xn
(a)

)
.

Proof. It follows from Proposition 17.2.1 that the components of ∇f(a) are

〈df(a), ei〉, i.e.
∂f

∂xi
(a).

Example 17.6.3. For the example in Section 17.5 we have

∇f(a) = (2a1 + 3a2
2, 6a1a2 + 3a2

2a3, a3
2 + 1),

∇f(1, 0, 1) = (2, 0, 1).

Proposition 17.6.4. Suppose f is differentiable at x. Then the directional
derivatives at x are given by

Dvf(x) = v · ∇f(x).

The unit vector v for which this is a maximum is v = ∇f(x)/|∇f(x)| (assum-
ing |∇f(x)| 6= 0), and the directional derivative in this direction is |∇f(x)|.

Proof. From Definition 17.6.1 and Proposition 17.5.2 it follows that

∇f(x) · v = 〈df(x),v〉 = Dvf(x)

This proves the first claim.
Now suppose v is a unit vector. From the Cauchy-Schwartz Inequality we have

∇f(x) · v ≤ |∇f(x)|.(44)

By the condition for equality in the Cauchy-Schwartz Inequality, equality holds
in (44) iff v is a positive multiple of ∇f(x). Since v is a unit vector, this is
equivalent to v = ∇f(x)/|∇f(x)|. The left side of (44) is then |∇f(x)|.

Definition 17.6.5. If f :Rn → R then the level set through x is {y: f(y) = f(x) }.

For example, the contour lines on a map are the level sets of the height function.
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Definition 17.6.6. A vector v is tangent at x to the level set S through x if

Dvf(x) = 0.

This is a reasonable definition, since f is constant on S, and so the rate of
change of f in any direction tangent to S should be zero.

Proposition 17.6.7. Suppose f is differentiable at x. Then ∇f(x) is orthog-
onal to all vectors which are tangent at x to the level set through x.

Proof. This is immediate from the previous Definition and Proposition 17.6.4.

In the previous proposition, we say∇f(x) is orthogonal to the level set through x.



17. DIFFERENTIATION OF REAL-VALUED FUNCTIONS 94

17.7. Some Interesting Examples.

Example 17.7.1. An example where the partial derivatives exist but the other
directional derivatives do not exist.

Let

f(x, y) = (xy)1/3.

Then

1.
∂f

∂x
(0, 0) = 0 since f = 0 on the x-axis;

2.
∂f

∂y
(0, 0) = 0 since f = 0 on the y-axis;

3. Let v be any vector. Then

Dvf(0, 0) = lim
t→0

f(tv)− f(0, 0)
t

= lim
t→0

t2/3(v1v2)1/3

t

= lim
t→0

(v1v2)1/3

t1/3
.

This limit does not exist, unless v1 = 0 or v2 = 0.

Example 17.7.2. An example where the directional derivatives at some point
all exist, but the function is not differentiable at the point.

Let

f(x, y) =


xy2

x2 + y4
(x, y) 6= (0, 0)

0 (x, y) = (0, 0)

Let v = (v1, v2) be any non-zero vector. Then

Dvf(0, 0) = lim
t→0

f(tv)− f(0, 0)
t

= lim
t→0

t3v1v2
2

t2v1
2 + t4v2

4
− 0

t

= lim
t→0

v1v2
2

v1
2 + t2v2

4

=
{

v2
2/v1 v1 6= 0
0 v1 = 0(45)

Thus the directional derivatives Dvf(0, 0) exist for all v, and are given by (45).
In particular

∂f

∂x
(0, 0) =

∂f

∂y
(0, 0) = 0.(46)

But if f were differentiable at (0, 0), then we could compute any directional
derivative from the partial drivatives. Thus for any vector v we would have

Dvf(0, 0) = 〈df(0, 0),v〉

= v1
∂f

∂x
(0, 0) + v2

∂f

∂y
(0, 0)

= 0 from (46)

This contradicts (45).
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Example 17.7.3. An Example where the directional derivatives at a point
all exist, but the function is not continuous at the point

Take the same example as in Example 17.7.2. Approach the origin along the
curve x = λ2, y = λ. Then

lim
λ→0

f(λ2, λ) = lim
λ→0

λ4

2λ4
=

1
2
.

But if we approach the origin along any straight line of the form (λv1, λv2),
then we can check that the corresponding limit is 0.

Thus it is impossible to define f at (0, 0) in order to make f continuous there.

17.8. Differentiability Implies Continuity. Despite Example 17.7.3 we
have the following result.

Proposition 17.8.1. If f is differentiable at a, then it is continuous at a.

Proof. Suppose f is differentiable at a. Then

f(x) = f(a) +
n∑
i=1

∂f

∂xi
(a)(xi − ai) + o(|x− a|).

Since xi − ai → 0 and o(|x − a|) → 0 as x → a, it follows that f(x) → f(a) as
x→ a. That is, f is continuous at a.

17.9. Mean Value Theorem and Consequences.

Theorem 17.9.1. Suppose f is continuous at all points on the line segment L
joining a and a + h; and is differentiable at all points on L, except possibly at the
end points.

Then

f(a + h)− f(a) = 〈df(x),h〉(47)

=
n∑
i=1

∂f

∂xi
(x) hi(48)

for some x ∈ L, x not an endpoint of L.

Proof. Note that (48) follows immediately from (47) by Corollary 17.5.3.
Define the one variable function g by

g(t) = f(a + th).

Then g is continuous on [0,1] (being the composition of the continuous functions
t 7→ a + th and x 7→ f(x)). Moreover,

g(0) = f(a), g(1) = f(a + h).(49)

We next show that g is differentiable and compute its derivative.
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If 0 < t < 1, then f is differentiable at a + th, and so

0 = lim
|w|→0

f(a + th + w)− f(a + th)− 〈df(a + th),w〉
|w| .(50)

Let w = sh where s is a small real number, positive or negative. Since |w| = ±s|h|,
and since we may assume h 6= 0 (as otherwise (47) is trivial), we see from (50) that

0 = lim
s→0

f
(
(a + (t + s)h

)
− f(a + th)− 〈df(a + th), sh〉

s

= lim
s→0

(
g(t + s)− g(t)

s
− 〈df(a + th),h〉

)
,

using the linearity of df(a + th).
Hence g′(t) exists for 0 < t < 1, and moreover

g′(t) = 〈df(a + th),h〉.(51)

By the usual Mean Value Theorem for a function of one variable, applied to g,
we have

g(1)− g(0) = g′(t)(52)

for some t ∈ (0, 1).
Substituting (49) and (51) in (52), the required result (47) follows.

If the norm of the gradient vector of f is bounded by M , then it is not surprising
that the difference in value between f(a) and f(a + h) is bounded by M |h|. More
precisely.

Corollary 17.9.2. Assume the hypotheses of the previous theorem and sup-
pose |∇f(x)| ≤M for all x ∈ L. Then

|f(a + h)− f(a)| ≤M |h|

Proof. From the previous theorem

|f(a + h)− f(a)| = |〈df(x),h〉| for some x ∈ L

= |∇f(x) · h|
≤ |∇f(x)| |h|
≤ M |h|.

Corollary 17.9.3. Suppose Ω ⊂ Rn is open and connected and f : Ω → R.
Suppose f is differentiable in Ω and df(x) = 0 for all x ∈ Ω52.

Then f is constant on Ω.

Proof. Choose any a ∈ Ω and suppose f(a) = α. Let

E = {x ∈ Ω : f(x) = α}.
Then E is non-empty (as a ∈ E). We will prove E is both open and closed in Ω.
Since Ω is connected, this will imply that E is all of Ω. This establishes the result.

To see E is open53, suppose x ∈ E and choose r > 0 so that Br(x) ⊂ Ω.
If y ∈ Br(x), then from (47) for some u between x and y,

f(y)− f(x) = 〈df(u),y − x〉
= 0, by hypothesis.

52Equivalently, ∇f(x) = 0 in Ω.
53Being open in Ω and being open in Rn is the same for subsets of Ω, since we are assuming

Ω is itself open in Rn.
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Thus f(y) = f(x) (= α), and so y ∈ E.
Hence Br(x) ⊂ E and so E is open.
To show that E is closed in Ω, it is sufficient to show that Ec ={y : f(x) 6= α}

is open in Ω.
From Proposition 17.8.1 we know that f is continuous. Since we have Ec =

f−1[R\{α}] and R\{α} is open, it follows that Ec is open in Ω. Hence E is closed
in Ω, as required.

Since E 6= ∅, and E is both open and closed in Ω, it follows E = Ω (as Ω is
connected).

In other words, f is constant (= α) on Ω.

17.10. Continuously Differentiable Functions. We saw in Section 17.7,
Example (2), that the partial derivatives (and even all the directional derivatives)
of a function can exist without the function being differentiable.

However, we do have the following important theorem:

Theorem 17.10.1. Suppose f : Ω (⊂ Rn) → R where Ω is open. If the partial
derivatives of f exist and are continuous at every point in Ω, then f is differentiable
everywhere in Ω.

Remark 17.10.1. If the partial derivatives of f exist in some neighbourhood
of, and are continuous at, a single point, it does not necessarily follow that f is
differentiable at that point. The hypotheses of the theorem need to hold at all
points in some open set Ω.

Proof of Theorem. We prove the theorem in case n = 2 (the proof for n > 2
is only notationally more complicated).

Suppose that the partial derivatives of f exist and are continuous in Ω. Then
if a ∈ Ω and a + h is sufficiently close to a,

f(a1 + h1, a2 + h2) = f(a1, a2)
+f(a1 + h1, a2)− f(a1, a2)
+f(a1 + h1, a2 + h2)− f(a1 + h1, a2)

= f(a1, a2) +
∂f

∂x1
(ξ1, a2)h1 +

∂f

∂x2
(a1 + h1, ξ2)h2,

for some ξ1 between a1 and a1 + h1, and some ξ2 between a2 and a2 + h2. The
first partial derivative comes from applying the usual Mean Value Theorem, for a
function of one variable, to the function f(x1, a2) obtained by fixing a2 and taking
x1 as a variable. The second partial derivative is similarly obtained by considering
the function f(a1 + h1, x2), where a1 + h1 is fixed and x2 is variable.

Hence

f(a1 + h1, a2 + h2) = f(a1, a2) +
∂f

∂x1
(a1, a2)h1 +

∂f

∂x2
(a1, a2)h2
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+
(

∂f

∂x1
(ξ1, a2)− ∂f

∂x1
(a1, a2)

)
h1

+
(

∂f

∂x2
(a1 + h1, ξ2)− ∂f

∂x2
(a1, a2)

)
h2

= f(a1, a2) + L(h) + ψ(h), say.

Here L is the linear map defined by

L(h) =
∂f

∂x1
(a1, a2)h1 +

∂f

∂x2
(a1, a2)h2

=
[

∂f

∂x1
(a1, a2)

∂f

∂x2
(a1, a2)

] [
h1

h2

]
.

Thus L is represented by the previous 1× 2 matrix.
We claim that the error term

ψ(h) =
(

∂f

∂x1
(ξ1, a2)− ∂f

∂x1
(a1, a2)

)
h1 +

(
∂f

∂x2
(a1 + h1, ξ2)− ∂f

∂x2
(a1, a2)

)
h2

can be written as o(|h|)
This follows from the facts:

1.
∂f

∂x1
(ξ1, a2) → ∂f

∂x1
(a1, a2) as h → 0 (by continuity of the partial deriva-

tives),

2.
∂f

∂x2
(a1 +h1, ξ2)→ ∂f

∂x2
(a1, a2) as h→ 0 (again by continuity of the partial

derivatives),
3. |h1| ≤ |h|, |h2| ≤ |h|.
It now follows from Proposition 17.5.7 that f is differentiable at a, and the

differential of f is given by the previous 1× 2 matrix of partial derivatives.
Since a ∈ Ω is arbitrary, this completes the proof.

Definition 17.10.2. If the partial derivatives of f exist and are continuous in
the open set Ω, we say f is a C1 (or continuously differentiable) function on Ω.
One writes f ∈ C1(Ω).

It follows from the previous Theorem that if f ∈ C1(Ω) then f is indeed differen-
tiable in Ω. Exercise: The converse may not be true, give a simple counterexample
in R.

17.11. Higher-Order Partial Derivatives. Suppose f : Ω (⊂ Rn) → R.

The partial derivatives
∂f

∂x1
, . . . ,

∂f

∂xn
, if they exist, are also functions from Ω to R,

and may themselves have partial derivatives.

The jth partial derivative of
∂f

∂xi
is denoted by

∂2f

∂xj∂xi
or fij or Dijf.

If all first and second partial derivatives of f exist and are continuous in Ω 54

we write
f ∈ C2(Ω).

Similar remarks apply to higher order derivatives, and we similarly define Cq(Ω)
for any integer q ≥ 0.

54In fact, it is sufficient to assume just that the second partial derivatives are continuous.
For under this assumption, each ∂f/∂xi must be differentiable by Theorem 17.10.1 applied to
∂f/∂xi. From Proposition 17.8.1 applied to ∂f/∂xi it then follows that ∂f/∂xi is continuous.



a = (a1, a2) (a1+h, a2)

(a1+h, a2+h)(a1, a2+h)

A B

C D

A(h) = ( ( f(B) - f(A) ) - ( f(D) - f(C) ) ) / h2

        = ( ( f(B) - f(D) ) - ( f(A) - f(C) ) ) / h2
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Note that
C0(Ω) ⊃ C1(Ω) ⊃ C2(Ω) ⊃ . . .

The usual rules for differentiating a sum, product or quotient of functions of a
single variable apply to partial derivatives. It follows that Ck(Ω) is closed under
addition, products and quotients (if the denominator is non-zero).

The next theorem shows that for higher order derivatives, the actual order of
differentiation does not matter, only the number of derivatives with respect to each
variable is important. Thus

∂2f

∂xi∂xj
=

∂2f

∂xj∂xi
,

and so
∂3f

∂xi∂xj∂xk
=

∂3f

∂xj∂xi∂xk
=

∂3f

∂xj∂xk∂xi
, etc.

Theorem 17.11.1. If f ∈ C1(Ω)55 and both fij and fji exist and are continu-
ous (for some i 6= j) in Ω, then fij = fji in Ω.

In particular, if f ∈ C2(Ω) then fij = fji for all i 6= j.

Proof. For notational simplicity we take n = 2. The proof for n > 2 is very
similar.

Suppose a ∈ Ω and suppose h > 0 is some sufficiently small real number.
Consider the second difference quotient defined by

A(h) =
1
h2

((
f(a1 + h, a2 + h)− f(a1, a2 + h)

)
−

(
f(a1 + h, a2)− f(a1, a2)

))
(53)

=
1
h2

(
g(a2 + h)− g(a2)

)
,(54)

where
g(x2) = f(a1 + h, x2)− f(a1, x2).

From the definition of partial differentiation, g′(x2) exists and

g′(x2) =
∂f

∂x2
(a1 + h, x2)− ∂f

∂x2
(a1, x2)(55)

for a2 ≤ x ≤ a2 + h.

55As usual, Ω is assumed to be open.
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Applying the mean value theorem for a function of a single variable to (54), we
see from (55) that

A(h) =
1
h

g′(ξ2) some ξ2 ∈ (a2, a2 + h)

=
1
h

(
∂f

∂x2
(a1 + h, ξ2)− ∂f

∂x2
(a1, ξ2)

)
.(56)

Applying the mean value theorem again to the function
∂f

∂x2
(x1, ξ2), with ξ2

fixed, we see

A(h) =
∂2f

∂x1∂x2
(ξ1, ξ2) some ξ1 ∈ (a1, a1 + h).(57)

If we now rewrite (53) as

A(h) =
1
h2

((
f(a1 + h, a2 + h)− f(a1 + h, a2)

)
−

(
f(a1, a2 + h)− f(a1 + a2)

))
(58)

and interchange the roles of x1 and x2 in the previous argument, we obtain

A(h) =
∂2f

∂x2∂x1
(η1, η2)(59)

for some η1 ∈ (a1, a1 + h), η2 ∈ (a2, a2 + h).
If we let h→ 0 then (ξ1, ξ2) and (η1, η2)→ (a1, a2), and so from (57), (59) and

the continuity of f12 and f21 at a, it follows that

f12(a) = f21(a).

This completes the proof.

17.12. Taylor’s Theorem. If g ∈ C1[a, b], then we know

g(b) = g(a) +
∫ b

a

g′(t) dt

This is the case k = 1 of the following version of Taylor’s Theorem for a function
of one variable.

Theorem 17.12.1 (Single Variable, Integral form of the Remainder).
Suppose g ∈ Ck[a, b]. Then

g(b) = g(a) + g′(a)(b− a) +
1
2!

g′′(a)(b− a)2 + · · ·(60)

+
1

(k − 1)!
g(k−1)(a)(b− a)k−1 +

∫ b

a

(b− t)k−1

(k − 1)!
g(k)(t) dt.

Proof. An elegant (but not obvious) proof is to begin by computing:
d

dt

(
gϕ(k−1) − g′ϕ(k−2) + g′′ϕ(k−3) − · · ·+ (−1)k−1g(k−1)ϕ

)
=

(
gϕ(k) + g′ϕ(k−1)

)
−

(
g′ϕ(k−1) + g′′ϕ(k−2)

)
+

(
g′′ϕ(k−2) + g′′′ϕ(k−3)

)
−

· · ·+ (−1)k−1
(
g(k−1)ϕ′ + g(k)ϕ

)
= gϕ(k) + (−1)k−1g(k)ϕ.(61)

Now choose

ϕ(t) =
(b− t)k−1

(k − 1)!
.



17. DIFFERENTIATION OF REAL-VALUED FUNCTIONS 101

Then

ϕ′(t) = (−1)
(b− t)k−2

(k − 2)!

ϕ′′(t) = (−1)2
(b− t)k−3

(k − 3)!
...

ϕ(k−3)(t) = (−1)k−3 (b− t)2

2!
ϕ(k−2)(t) = (−1)k−2(b− t)

ϕ(k−1)(t) = (−1)k−1

ϕk(t) = 0.(62)

Hence from (61) we have

(−1)k−1 d

dt

(
g(t) + g′(t)(b− t) + g′′(t)

(b− t)2

2!
+ · · ·+ gk−1(t)

(b− t)k−1

(k − 1)!

)
= (−1)k−1g(k)(t)

(b− t)k−1

(k − 1)!
.

Dividing by (−1)k−1 and integrating both sides from a to b, we get

g(b)−
(

g(a) + g′(a)(b− a) + g′′(a)
(b− a)2

2!
+ · · ·+ g(k−1)(a)

(b− a)k−1

(k − 1)!

)
=

∫ b

a

g(k)(t)
(b− t)k−1

(k − 1)!
dt.

This gives formula (60).

Theorem 17.12.2 (Single Variable, Second Version). Suppose g ∈ Ck[a, b]. Then

g(b) = g(a) + g′(a)(b− a) +
1
2!

g′′(a)(b− a)2 + · · ·

+
1

(k − 1)!
g(k−1)(a)(b− a)k−1 +

1
k!

g(k)(ξ)(b− a)k(63)

for some ξ ∈ (a, b).

Proof. We establish (63) from (60).
Since g(k) is continuous in [a, b], it has a minimum value m, and a maximum

value M , say.
By elementary properties of integrals, it follows that∫ b

a

m
(b− t)k−1

(k − 1)!
dt ≤

∫ b

a

g(k)(t)
(b− t)k−1

(k − 1)!
dt ≤

∫ b

a

M
(b− t)k−1

(k − 1)!
dt,

i.e.

m ≤

∫ b

a

g(k)(t)
(b− t)k−1

(k − 1)!
dt∫ b

a

(b− t)k−1

(k − 1)!
dt

≤M.

By the Intermediate Value Theorem, g(k) takes all values in the range [m, M ],
and so the middle term in the previous inequality must equal g(k)(ξ) for some
ξ ∈ (a, b). Since ∫ b

a

(b− t)k−1

(k − 1)!
dt =

(b− a)k

k!
,
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it follows ∫ b

a

g(k)(t)
(b− t)k−1

(k − 1)!
dt =

(b− a)k

k!
g(k)(ξ).

Formula (63) now follows from (60).

Taylor’s Theorem generalises easily to functions of more than one variable.

Theorem 17.12.3 (Taylor’s Formula; Several Variables).
Suppose f ∈ Ck(Ω) where Ω ⊂ Rn, and the line segment joining a and a + h is a
subset of Ω.

Then

f(a + h) = f(a) +
n∑
i−1

Dif(a) hi +
1
2!

n∑
i,j=1

Dijf(a) hihj + · · ·

+
1

(k − 1)!

n∑
i1,··· ,ik−1=1

Di1...ik−1f(a) hi1 · . . . · hik−1 + Rk(a,h)

where

Rk(a,h) =
1

(k − 1)!

n∑
i1,... ,ik=1

∫ 1

0

(1− t)k−1Di1...ikf(a + th) dt

=
1
k!

n∑
i1,... ,ik=1

Di1,... ,ikf(a + sh)hi1 · . . . · hik for some s ∈ (0, 1).

Proof. First note that for any differentiable function F : D (⊂ Rn) → R we
have

d

dt
F (a + th) =

n∑
i=1

DiF (a + th) hi.(64)

This is just a particular case of the chain rule, which we will discuss later. This
particular version follows from (51) and Corollary 17.5.3 (with f there replaced by
F ).

Let

g(t) = f(a + th).

Then g : [0, 1] → R. We will apply Taylor’s Theorem for a function of one variable
to g.

From (64) we have

g′(t) =
n∑
i−1

Dif(a + th) hi.(65)

Differentiating again, and applying (64) to DiF , we obtain

g′′(t) =
n∑
i=1

 n∑
j=1

Dijf(a + th) hj

 hi

=
n∑

i,j=1

Dijf(a + th) hihj .(66)

Similarly

g′′′(t) =
n∑

i,j,k=1

Dijkf(a + th) hihjhk,(67)

etc. In this way, we see g ∈ Ck[0, 1] and obtain formulae for the derivatives of g.



17. DIFFERENTIATION OF REAL-VALUED FUNCTIONS 103

But from (60) and (63) we have

g(1) = g(0) + g′(0) +
1
2!

g′′(0) + · · ·+ 1
(k − 1)!

g(k−1)(0)

+


1

(k − 1)!

∫ 1

0

(1− t)k−1g(k)(t) dt

or
1
k!

g(k)(s) some s ∈ (0, 1).

If we substitute (65), (66), (67) etc. into this, we obtain the required results.

Remark 17.12.1. The first two terms of Taylor’s Formula give the best first
order approximation56 in h to f(a + h) for h near 0. The first three terms give
the best second order approximation57 in h, the first four terms give the best third
order approximation, etc.

Note that the remainder term Rk(a,h) in Theorem 17.12.3 can be written as
O(|h|k) (see the Remarks on rates of convergence in Section 17.5), i.e.

Rk(a,h)
|h|k is bounded as h→ 0.

This follows from the second version for the remainder in Theorem 17.12.3 and the
facts:

1. Di1...ikf(x) is continuous, and hence bounded on compact sets,
2. |hi1 · . . . · hik | ≤ |h|k.

Example 17.12.4. Let

f(x, y) = (1 + y2)1/2 cos x.

One finds the best second order approximation to f for (x, y) near (0, 1) as follows.
First note that

f(0, 1) = 21/2.

Moreover,

f1 = −(1 + y2)1/2 sin x; = 0 at (0, 1)
f2 = y(1 + y2)−1/2 cos x; = 2−1/2 at (0, 1)
f11 = −(1 + y2)1/2 cos x; = −21/2 at (0, 1)
f12 = −y(1 + y2)−1/2 sin x; = 0 at (0, 1)
f22 = (1 + y2)−3/2 cos x; = 2−3/2 at (0, 1).

Hence

f(x, y) = 21/2 + 2−1/2(y − 1)− 21/2x2 + 2−3/2(y − 1)2 + R3

(
(0, 1), (x, y)

)
,

where

R3

(
(0, 1), (x, y)

)
= O

(
|(x, y)− (0, 1)|3

)
= O

((
x2 + (y − 1)2

)3/2
)

.

56I.e. constant plus linear term.
57I.e. constant plus linear term plus quadratic term.
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18. Differentiation of Vector-Valued Functions

You need only consider Subsections 1, 2 (to the beginning of Definition 19.2.7),
3, 4, 5 (the last is not examinable). What is required is just a basic understanding
of the ideas, and application to straightforward examples.

18.1. Introduction. In this chapter we consider functions

f :D (⊂ Rn)→ Rm,

with m ≥ 1.
We write

f(x1, . . . , xn) =
(
f1(x1, . . . , xn), . . . , fm(x1, . . . , xn)

)
where

f i :D → R i = 1, . . . , m

are real -valued functions.

Example 18.1.1. Let

f(x, y, z) = (x2 − y2, 2xz + 1).

Then f1(x, y, z) = x2 − y2 and f2(x, y, z) = 2xz + 1.

Reduction to Component Functions For many purposes we can reduce the
study of functions f , as above, to the study of the corresponding real -valued func-
tions f1, . . . , fm. However, this is not always a good idea, since studying the f i

involves a choice of coordinates in Rm, and this can obscure the geometry involved.
In Definitions 18.2.1, 18.3.1 and 18.4.1 we define the notion of partial derivative,

directional derivative, and differential of f without reference to the component
functions. In Propositions 18.2.2, 18.3.2 and 18.4.2 we show these definitions are
equivalent to definitions in terms of the component functions.

18.2. Paths in Rm. In this section we consider the case corresponding to
n = 1 in the notation of the previous section. This is an important case in its own
right and also helps motivate the case n > 1.

Definition 18.2.1. Let I be an interval in R. If f :I → Rn then the derivative
or tangent vector at t is the vector

f ′(t) = lim
s→0

f(t + s)− f(t)
s

,

provided the limit exists58. In this case we say f is differentiable at t. If, moreover,
f ′(t) 6= 0 then f ′(t)/|f ′(t)| is called the unit tangent at t.

Remark 18.2.1. Although we say f ′(t) is the tangent vector at t, we should
really think of f ′(t) as a vector with its “base” at f(t). See the next diagram.

Proposition 18.2.2. Let f(t) =
(
f1(t), . . . , fm(t)

)
. Then f is differentiable

at t iff f1, . . . , fm are differentiable at t. In this case

f ′(t) =
(
f1′(t), . . . , fm′(t)

)
.

Proof. Since
f(t + s)− f(t)

s
=

(
f1(t + s)− f1(t)

s
, . . . ,

fm(t + s)− fm(t)
s

)
,

The theorem follows since a function into Rm converges iff its component functions
converge.

58If t is an endpoint of I then one takes the corresponding one-sided limits.



f(t)

f(t+s)

f(t+s) - f(t)
        s

f'(t)

a path in R2

t1 t2

f

f(t1)=f(t2)
f'(t1)

f'(t2)

I
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Definition 18.2.3. If f(t) =
(
f1(t), . . . , fm(t)

)
then f is C1 if each f i is C1.

We have the usual rules for differentiating the sum of two functions from I
to Rm, and the product of such a function with a real valued function (exercise:
formulate and prove such a result). The following rule for differentiating the inner
product of two functions is useful.

Proposition 18.2.4. If f1, f2 :I → Rm are differentable at t then

d

dt

(
f1(t), f2(t)

)
=

(
f ′1(t), f2(t)

)
+

(
f1(t), f ′2(t)

)
.

Proof. Since (
f1(t), f2(t)

)
=

m∑
i=1

f i1(t)f
i
2(t),

the result follows from the usual rule for differentiation sums and products.

If f :I → Rm, we can think of f as tracing out a “curve” in Rm (we will make
this precise later). The terminology tangent vector is reasonable, as we see from
the following diagram. Sometimes we speak of the tangent vector at f(t) rather
than at t, but we need to be careful if f is not one-one, as in the second figure.

Example 18.2.5.

1. Let

f(t) = (cos t, sin t) t ∈ [0, 2π).

This traces out a circle in R2 and

f ′(t) = (− sin t, cos t).

2. Let

f(t) = (t, t2).

This traces out a parabola in R2 and

f ′(t) = (1, 2t).



f(t)=(cos t, sin t)

f'(t) = (-sin t, cos t)

f(t) = (t, t2)

f'(t) = (1, 2t)
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Example 18.2.6. Consider the functions

1. f1(t) = (t, t3) t ∈ R,
2. f2(t) = (t3, t9) t ∈ R,
3. f3(t) = ( 3

√
t, t) t ∈ R.

Then each function f i traces out the same “cubic” curve in R2, (i.e., the image is
the same set of points), and

f1(0) = f2(0) = f3(0) = (0, 0).

However,

f ′1(0) = (1, 0), f ′2(0) = (0, 0), f ′3(0) is undefined.

Intuitively, we will think of a path in Rm as a function f which neither stops nor
reverses direction. It is often convenient to consider the variable t as representing
“time”. We will think of the corresponding curve as the set of points traced out by
f . Many different paths (i.e. functions) will give the same curve; they correspond
to tracing out the curve at different times and velocities. We make this precise as
follows:

Definition 18.2.7. We say f :I → Rm is a path59 in Rm if f is C1 and f ′(t) 6= 0
for t ∈ I. We say the two paths f1 : I1 → Rm and f2 : I2 → Rm are equivalent if
there exists a function φ :I1 → I2 such that f1 = f2 ◦φ, where φ is C1 and φ′(t) > 0
for t ∈ I1.

A curve is an equivalence class of paths. Any path in the equivalence class is
called a parametrisation of the curve.

We can think of φ as giving another way of measuring “time”.
We expect that the unit tangent vector to a curve should depend only on the

curve itself, and not on the particular parametrisation. This is indeed the case, as
is shown by the following Proposition.

59Other texts may have different terminology.



f1(t)=f2(ϕ(t))

f1
f2

ϕ

I1 I2

f1'(t) / |f1'(t)| = 
   f2'(ϕ(t)) /  |f2'(ϕ(t))|
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Proposition 18.2.8. Suppose f1 : I1 → Rm and f2 : I2 → Rm are equivalent
parametrisations; and in particular f1 = f2 ◦ φ where φ : I1 → I2, φ is C1 and
φ′(t) > 0 for t ∈ I1. Then f1 and f2 have the same unit tangent vector at t and
φ(t) respectively.

Proof. From the chain rule for a function of one variable, we have

f ′1(t) =
(
f1
1
′
(t), . . . , fm1

′(t)
)

=
(
f1
2
′
(φ(t))φ′(t), . . . , fm2

′(φ(t))φ′(t)
)

= f ′2(φ(t))φ′(t).

Hence, since φ′(t) > 0,

f ′1(t)∣∣f ′1(t)∣∣ =
f ′2(t)∣∣f ′2(t)∣∣ .

Definition 18.2.9. If f is a path in Rm, then the acceleration at t is f ′′(t).

Example 18.2.10. If |f ′(t)| is constant (i.e. the “speed” is constant) then the
velocity and the acceleration are orthogonal.

Proof. Since |f(t)|2 =
(
f ′(t), f ′(y)

)
is constant, we have from Proposition 18.2.4

that

0 =
d

dt

(
f ′(t), f ′(y)

)
= 2

(
f ′′(t), f ′(y)

)
.

This gives the result.

Arc length Suppose f : [a, b]→ Rm is a path in Rm. Let a = t1 < t2 < . . . <
tn = b be a partition of [a, b], where ti − ti−1 = δt for all i.

We think of the length of the curve corresponding to f as being

≈
N∑
i=2

|f(ti)− f(ti−1)| =
N∑
i=2

|f(ti)− f(ti−1)|
δt

δt ≈
∫ b

a

∣∣f ′(t)∣∣ dt.

See the next diagram.



t1 ti-1 ti tN

f(t1)

f(tN)

f(ti-1)

f(ti)

f
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Motivated by this we make the following definition.

Definition 18.2.11. Let f : [a, b] → Rm be a path in Rm. Then the length of
the curve corresponding to f is given by∫ b

a

∣∣f ′(t)∣∣ dt.

The next result shows that this definition is independent of the particular
parametrisation chosen for the curve.

Proposition 18.2.12. Suppose f1 : [a1, b1] → Rm and f2 : [a2, b2] → Rm are
equivalent parametrisations; and in particular f1 = f2◦φ where φ : [a1, b1]→ [a2, b2],
φ is C1 and φ′(t) > 0 for t ∈ I1. Then∫ b1

a1

∣∣f ′1(t)∣∣ dt =
∫ b2

a2

∣∣f ′2(s)∣∣ ds.

Proof. From the chain rule and then the rule for change of variable of inte-
gration, ∫ b1

a1

∣∣f ′1(t)∣∣ dt =
∫ b1

a1

∣∣f ′2(φ(t))
∣∣ φ′(t)dt

=
∫ b2

a2

∣∣f ′2(s)∣∣ ds.

18.3. Partial and Directional Derivatives. Analogous to Definitions 17.3.1
and 17.4.1 we have:

Definition 18.3.1. The ith partial derivative of f at x is defined by

∂f
∂xi

(x)
(
or Dif(x)

)
= lim
t→0

f(x + tei)− f(x)
t

,

provided the limit exists. More generally, the directional derivative of f at x in the
direction v is defined by

Dvf(x) = lim
t→0

f(x + tv)− f(x)
t

,

provided the limit exists.

Remark 18.3.1.

1. It follows immediately from the Definitions that
∂f
∂xi

(x) = Deif(x).



Dv f(a)

f(a)

v

e1

e2

a

f(b)

∂ f
∂y

∂ f
∂x

(b)

(b)
b

R2

R3

f
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2. The partial and directional derivatives are vectors in Rm. In the terminol-

ogy of the previous section,
∂f
∂xi

(x) is tangent to the path t 7→ f(x + tei)

and Dvf(x) is tangent to the path t 7→ f(x + tv). Note that the curves
corresponding to these paths are subsets of the image of f .

3. As we will discuss later, we may regard the partial derivatives at x as a basis
for the tangent space to the image of f at f(x)60.

Proposition 18.3.2. If f1, . . . , fm are the component functions of f then

∂f
∂xi

(a) =
(

∂f1

∂xi
(a), . . . ,

∂fm

∂xi
(a)

)
for i = 1, . . . , n

Dvf(a) =
(
Dvf1(a), . . . , Dvfm(a)

)
in the sense that if one side of either equality exists, then so does the other, and
both sides are then equal.

Proof. Essentially the same as for the proof of Proposition 18.2.2.

Example 18.3.3. Let f :R2 → R3 be given by

f(x, y) = (x2 − 2xy, x2 + y3, sinx).

Then
∂f
∂x

(x, y) =
(

∂f1

∂x
,
∂f2

∂x
,
∂f3

∂x

)
= (2x− 2y, 2x, cos x),

∂f
∂y

(x, y) =
(

∂f1

∂y
,
∂f2

∂y
,
∂f3

∂y

)
= (−2x, 3y2, 0),

are vectors in R3.

18.4. The Differential. Analogous to Definition 17.5.1 we have:

Definition 18.4.1. Suppose f : D (⊂ Rn) → Rm. Then f is differentiable at
a ∈ D if there is a linear transformation L :Rn → Rm such that∣∣∣f(x)−

(
f(a) + L(x− a)

)∣∣∣
|x− a| → 0 as x→ a.(68)

60More precisely, if n ≤ m and the differential df(x) has rank n. See later.
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The linear transformation L is denoted by f ′(a) or df(a) and is called the derivative
or differential of f at a61.

A vector-valued function is differentiable iff the corresponding component func-
tions are differentiable. More precisely:

Proposition 18.4.2. f is differentiable at a iff f1, . . . , fm are differentiable
at a. In this case the differential is given by

〈df(a),v〉 =
(
〈df1(a),v〉, . . . , 〈dfm(a),v〉

)
.(69)

In particular, the differential is unique.

Proof. For any linear map L : Rn → Rm, and for each i = 1, . . . , m, let

Li :Rn → R be the linear map defined by Li(v) =
(
L(v)

)i
.

Since a function into Rm converges iff its component functions converge, it
follows ∣∣∣f(x)−

(
f(a) + L(x− a)

)∣∣∣
|x− a| → 0 as x→ a

iff ∣∣∣f i(x)−
(
f i(a) + Li(x− a)

)∣∣∣
|x− a| → 0 as x→ a for i = 1, . . . , m.

Thus f is differentiable at a iff f1, . . . , fm are differentiable at a.
In this case we must have

Li = df i(a) i = 1, . . . , m

(by uniqueness of the differential for real -valued functions), and so

L(v) =
(
〈df1(a),v〉, . . . , 〈dfm(a),v〉

)
.

But this says that the differential df(a) is unique and is given by (69).

Corollary 18.4.3. If f is differentiable at a then the linear transformation
df(a) is represented by the matrix

∂f1

∂x1
(a) · · · ∂f1

∂xn
(a)

... · · ·
...

∂fm

∂x1
(a) · · · ∂fm

∂xn
(a)

 : Rn → Rm(70)

Proof. The ith column of the matrix corresponding to df(a) is the vector
〈df(a), ei〉62. From Proposition 18.4.2 this is the column vector corresponding to(

〈df1(a), ei〉, . . . , 〈dfm(a), ei〉
)
,

i.e. to (∂f1

∂xi
(a), . . . ,

∂fm

∂xi
(a)

)
.

This proves the result.

61It follows from Proposition 18.4.2 that if L exists then it is unique and is given by the right
side of (69).

62For any linear transformation L :Rn → Rm, the ith column of the corresponding matrix is
L(ei).
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Remark 18.4.1. The jth column is the vector in Rm corresponding to the

partial derivative
∂f
∂xj

(a). The ith row represents df i(a).

The following proposition is immediate.

Proposition 18.4.4. If f is differentiable at a then

f(x) = f(a) + 〈df(a),x− a〉+ ψ(x),

where ψ(x) = o(|x− a|).
Conversely, suppose

f(x) = f(a) + L(x− a) + ψ(x),

where L :Rn → Rm is linear and ψ(x) = o(|x − a|). Then f is differentiable at a
and df(a) = L.

Proof. As for Proposition 17.5.7.

Thus as is the case for real-valued functions, the previous proposition implies
f(a) + 〈df(a),x− a〉 gives the best first order approximation to f(x) for x near a.

Example 18.4.5. Let f :R2 → R2 be given by

f(x, y) = (x2 − 2xy, x2 + y3).

Find the best first order approximation to f(x) for x near (1, 2).
Solution:

f(1, 2) =
[
−3
9

]
,

df(x, y) =
[

2x− 2y −2x
2x 3y2

]
,

df(1, 2) =
[
−2 −2
2 12

]
.

So the best first order approximation near (1, 2) is

f(1, 2) + 〈df(1, 2), (x− 1, y − 2)〉

=
[
−3
9

]
+

[
−2 −2
2 12

] [
x− 1
y − 2

]
=

[
−3− 2(x− 1)− 4(y − 2)
9 + 2(x− 1) + 12(y − 2)

]
=

[
7− 2x− 4y
−17 + 2x + 12y

]
.

Alternatively, working with each component separately, the best first order
approximation is(

f1(1, 2) +
∂f1

∂x
(1, 2)(x− 1) +

∂f1

∂y
(1, 2)(y − 2),

f2(1, 2) +
∂f2

∂x
(1, 2)(x− 1) +

∂f2

∂y
(y − 2)

)
=

(
−3− 2(x− 1)− 4(y − 2), 9 + 2(x− 1) + 12(y − 2)

)
=

(
7− 2x− 4y, −17 + 2x + 12y

)
.

Remark 18.4.2. One similarly obtains second and higher order approxima-
tions by using Taylor’s formula for each component function.



18. DIFFERENTIATION OF VECTOR-VALUED FUNCTIONS 112

Proposition 18.4.6. If f ,g :D (⊂ Rn)→ Rm are differentiable at a ∈ D, then
so are αf and f + g. Moreover,

d(αf)(a) = αdf(a),
d(f + g)(a) = df(a) + dg(a).

Proof. This is straightforward (exercise) from Proposition 18.4.4.

The previous proposition corresponds to the fact that the partial derivatives for
f + g are the sum of the partial derivatives corresponding to f and g respectively.
Similarly for αf .

Higher Derivatives We say f ∈ Ck(D) iff f1, . . . , fm ∈ Ck(D). It follows from
the corresponding results for the component functions that

1. f ∈ C1(D)⇒ f is differentiable in D;
2. C0(D) ⊃ C1(D) ⊃ C2(D) ⊃ . . . .

18.5. The Chain Rule. The chain rule for the composition of functions of
one variable says that

d

dx
g
(
f(x)

)
= g′

(
f(x)

)
f ′(x).

Or to use a more informal notation, if g = g(f) and f = f(x), then

dg

dx
=

dg

df

df

dx
.

This is generalised in the following theorem. The theorem says that the linear
approximation to g ◦ f (computed at x) is the composition of the linear approxi-
mation to f (computed at x) followed by the linear approximation to g (computed
at f(x)).

A Little Linear Algebra Suppose L :Rn → Rm is a linear map. Then we define
the norm of L by

‖L‖ = max{|L(x)| : |x| ≤ 1}63.
A simple result (exercise) is that

|L(x)| ≤ ||L|| |x|(71)

for any x ∈ Rn.
It is also easy to check (exercise) that || · || does define a norm on the vector

space of linear maps from Rn into Rm.

Theorem 18.5.1 (Chain Rule). Suppose f :D (⊂ Rn)→ Ω (⊂ Rm) and g :Ω (⊂
Rm) → Rr. Suppose f is differentiable at x and g is differentiable at f(x). Then
g ◦ f is differentiable at x and

d(g ◦ f)(x) = dg(f(x)) ◦ df(x).(72)

Schematically:
g◦f

D
−−−−−−−−−−−−−−−−−−−→
(⊂ Rn) f−→ Ω (⊂ Rm)

g−→Rr
d(g◦f)(x) = dg(f(x)) ◦ df(x)

Rn
−−−−−−−−−−−−−−−−−−→
df(x)−→ Rm dg(f(x))−→ Rr

63Here |x|, |L(x)| are the usual Euclidean norms on Rn and Rm. Thus ‖L‖ corresponds to the
maximum value taken by L on the unit ball. The maximum value is achieved, as L is continuous
and {x : |x| ≤ 1} is compact.
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Example 18.5.2. To see how all this corresponds to other formulations of the
chain rule, suppose we have the following:

R3 f−→ R2 g−→ R2

(x, y, z) (u, v) (p, q)

Thus coordinates in R3 are denoted by (x, y, z), coordinates in the first copy of
R2 are denoted by (u, v) and coordinates in the second copy of R2 are denoted by
(p, q).

The functions f and g can be written as follows:

f : u = u(x, y, z), v = v(x, y, z),
g : p = p(u, v), q = q(u, v).

Thus we think of u and v as functions of x, y and z; and p and q as functions of u
and v.

We can also represent p and q as functions of x, y and z via

p = p
(
u(x, y, z), v(x, y, z)

)
, q = q

(
u(x, y, z), v(x, y, z)

)
.

The usual version of the chain rule in terms of partial derivatives is:
∂p

∂x
=

∂p

∂u

∂u

∂x
+

∂p

∂v

∂v

∂x
∂p

∂x
=

∂p

∂u

∂u

∂x
+

∂p

∂v

∂v

∂x
...

∂q

∂z
=

∂q

∂u

∂u

∂z
+

∂q

∂v

∂v

∂z
.

In the first equality, ∂p
∂x is evaluated at (x, y, z), ∂p

∂u and ∂p
∂v are evaluated at(

u(x, y, z), v(x, y, z)
)
, and ∂u

∂x and ∂v
∂x are evaluated at (x, y, z). Similarly for the

other equalities.
In terms of the matrices of partial derivatives:[

∂p
∂x

∂p
∂y

∂p
∂z

∂q
∂x

∂q
∂y

∂q
∂z

]
︸ ︷︷ ︸

d(g ◦ f)(x)

=
[

∂p
∂u

∂p
∂v

∂q
∂u

∂q
∂v

]
︸ ︷︷ ︸

dg(f(x))

[
∂u
∂x

∂u
∂y

∂u
∂z

∂v
∂x

∂v
∂y

∂v
∂z

]
,︸ ︷︷ ︸

df(x)

where x = (x, y, z).

Proof of Chain Rule: We want to show

(f ◦ g)(a + h) = (f ◦ g)(a) + L(h) + o(|h|),(73)

where L = df(g(a)) ◦ dg(a).
Now

(f ◦ g)(a + h) = f
(
g(a + h)

)
= f

(
g(a) + g(a + h)− g(a)

)
= f

(
g(a)

)
+

〈
df

(
g(a)

)
, g(a + h)− g(a)

〉
+o

(
|g(a + h)− g(a)|

)
. . . by the differentiability of f

= f
(
g(a)

)
+

〈
df

(
g(a)

)
, 〈dg(a),h〉+ o(|h|)

〉
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+o
(
|g(a + h)− g(a)|

)
. . . by the differentiability of g

= f
(
g(a)

)
+

〈
df

(
g(a)

)
, 〈dg(a),h〉

〉
+

〈
df

(
g(a)

)
, o(|h|)

〉
+ o

(
|g(a + h)− g(a)|

)
= A + B + C + D

But B =
〈
df

(
g(a)

)
◦ dg(a), h

〉
, by definition of the “composition” of two

maps. Also C = o(|h|) from (71) (exercise). Finally, for D we have∣∣∣g(a + h)− g(a)
∣∣∣ =

∣∣∣〈dg(a),h〉+ o(|h|)
∣∣∣ . . . by differentiability of g

≤ ||dg(a)|| |h|+ o(|h|) . . . from (71)
= O(|h|) . . . why?

Substituting the above expressions into A + B + C + D, we get

(f ◦ g)(a + h) = f
(
g(a)

)
+

〈
df

(
g(a))

)
◦ dg(a), h

〉
+ o(|h|).(74)

If follows that f ◦ g is differentiable at a, and moreover the differential equals
df(g(a)) ◦ dg(a). This proves the theorem.


